/**
  Copyright (C) 2012-2022 by Autodesk, Inc.
  All rights reserved.

  FANUC post processor configuration.

  $Revision: 43964 89925c80df939b71c9800358efebb7d97de3ee3b $
  $Date: 2022-09-21 13:57:49 $

  FORKID {CB457AE9-77B4-4F88-B95A-4DC6980DBE3D}
*/

description = "FANUC - Inverse Time and A-axis";
vendor = "Fanuc";
vendorUrl = "http://www.fanuc.com";
legal = "Copyright (C) 2012-2022 by Autodesk, Inc.";
certificationLevel = 2;
minimumRevision = 45702;

longDescription = "Generic Fanuc post illustrating inverse time feed with an A-axis.";
deprecatedDescription = "This post has been deprecated. Use the generic Fanuc post instead.";

extension = "nc";
programNameIsInteger = true;
setCodePage("ascii");

capabilities = CAPABILITY_MILLING;
tolerance = spatial(0.002, MM);

minimumChordLength = spatial(0.25, MM);
minimumCircularRadius = spatial(0.01, MM);
maximumCircularRadius = spatial(1000, MM);
minimumCircularSweep = toRad(0.01);
maximumCircularSweep = toRad(180);
allowHelicalMoves = true;
allowedCircularPlanes = undefined; // allow any circular motion
highFeedrate = (unit == IN) ? 500 : 5000;

// user-defined properties
properties = {
  writeMachine: {
    title      : "Write machine",
    description: "Output the machine settings in the header of the code.",
    group      : "formats",
    type       : "boolean",
    value      : true,
    scope      : "post"
  },
  writeTools: {
    title      : "Write tool list",
    description: "Output a tool list in the header of the code.",
    group      : "formats",
    type       : "boolean",
    value      : true,
    scope      : "post"
  },
  preloadTool: {
    title      : "Preload tool",
    description: "Preloads the next tool at a tool change (if any).",
    group      : "preferences",
    type       : "boolean",
    value      : true,
    scope      : "post"
  },
  showSequenceNumbers: {
    title      : "Use sequence numbers",
    description: "'Yes' outputs sequence numbers on each block, 'Only on tool change' outputs sequence numbers on tool change blocks only, and 'No' disables the output of sequence numbers.",
    group      : "formats",
    type       : "enum",
    values     : [
      {title:"Yes", id:"true"},
      {title:"No", id:"false"},
      {title:"Only on tool change", id:"toolChange"}
    ],
    value: "true",
    scope: "post"
  },
  sequenceNumberStart: {
    title      : "Start sequence number",
    description: "The number at which to start the sequence numbers.",
    group      : "formats",
    type       : "integer",
    value      : 10,
    scope      : "post"
  },
  sequenceNumberIncrement: {
    title      : "Sequence number increment",
    description: "The amount by which the sequence number is incremented by in each block.",
    group      : "formats",
    type       : "integer",
    value      : 5,
    scope      : "post"
  },
  optionalStop: {
    title      : "Optional stop",
    description: "Outputs optional stop code during when necessary in the code.",
    group      : "preferences",
    type       : "boolean",
    value      : true,
    scope      : "post"
  },
  o8: {
    title      : "8 Digit program number",
    description: "Specifies that an 8 digit program number is needed.",
    group      : "formats",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  separateWordsWithSpace: {
    title      : "Separate words with space",
    description: "Adds spaces between words if 'yes' is selected.",
    group      : "formats",
    type       : "boolean",
    value      : true,
    scope      : "post"
  },
  allow3DArcs: {
    title      : "Allow 3D arcs",
    description: "Specifies whether 3D circular arcs are allowed.",
    group      : "preferences",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  useRadius: {
    title      : "Radius arcs",
    description: "If yes is selected, arcs are outputted using radius values rather than IJK.",
    group      : "preferences",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  forceIJK: {
    title      : "Force IJK",
    description: "Force the output of IJK for G2/G3 when not using R mode.",
    group      : "preferences",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  showNotes: {
    title      : "Show notes",
    description: "Writes operation notes as comments in the outputted code.",
    group      : "formats",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  useSmoothing: {
    title      : "Use smoothing",
    description: "Defines the smoothing control mode (AICC/AIAPC). 'On' outputs G05.1 Q0/Q1 only, 'Automatic' or 'Level 1-10' outputs G05.1 Q1 with the R value for the desired level.",
    group      : "preferences",
    type       : "enum",
    values     : [
      {title:"Off", id:"-1"},
      {title:"On", id:"0"},
      {title:"Automatic", id:"9999"},
      {title:"Level 1", id:"1"},
      {title:"Level 2", id:"2"},
      {title:"Level 3", id:"3"},
      {title:"Level 4", id:"4"},
      {title:"Level 5", id:"5"},
      {title:"Level 6", id:"6"},
      {title:"Level 7", id:"7"},
      {title:"Level 8", id:"8"},
      {title:"Level 9", id:"9"},
      {title:"Level 10", id:"10"},
    ],
    value: "-1",
    scope: "post"
  },
  usePitchForTapping: {
    title      : "Use pitch for tapping",
    description: "Enables the use of pitch instead of feed for the F-word in canned tapping cycles. Your CNC control must be setup for pitch mode!",
    group      : "preferences",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  useG54x4: {
    title      : "Use G54.4",
    description: "Fanuc 30i supports G54.4 for workpiece error compensation.",
    group      : "probing",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  reverseAAxis: {
    title      : "Reverse A-axis",
    description: "Makes the A-axis rotate the opposite way.",
    group      : "configuration",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  useSubroutines: {
    title      : "Use subroutines",
    description: "Select your desired subroutine option. 'All Operations' creates subroutines per each operation, 'Cycles' creates subroutines for cycle operations on same holes, and 'Patterns' creates subroutines for patterned operations.",
    group      : "preferences",
    type       : "enum",
    values     : [
      {title:"No", id:"none"},
      {title:"All Operations", id:"allOperations"},
      {title:"Cycles", id:"cycles"},
      {title:"Patterns", id:"patterns"}
    ],
    value: "none",
    scope: "post"
  },
  useFilesForSubprograms: {
    title      : "Use files for subroutines",
    description: "If enabled, subroutines will be saved as individual files.",
    group      : "preferences",
    type       : "boolean",
    value      : false,
    scope      : "post"
  },
  useRigidTapping: {
    title      : "Use rigid tapping",
    description: "Select 'Yes' to enable, 'No' to disable, or 'Without spindle direction' to enable rigid tapping without outputting the spindle direction block.",
    group      : "preferences",
    type       : "enum",
    values     : [
      {title:"Yes", id:"yes"},
      {title:"No", id:"no"},
      {title:"Without spindle direction", id:"without"}
    ],
    value: "yes",
    scope: "post"
  },
  singleResultsFile: {
    title      : "Create single results file",
    description: "Set to false if you want to store the measurement results for each probe / inspection toolpath in a separate file",
    group      : "probing",
    type       : "boolean",
    value      : true,
    scope      : "post"
  }
};

// wcs definiton
wcsDefinitions = {
  useZeroOffset: false,
  wcs          : [
    {name:"Standard", format:"G", range:[54, 59]},
    {name:"Extended", format:"G54.1 P", range:[1, 300]}
  ]
};

var singleLineCoolant = false; // specifies to output multiple coolant codes in one line rather than in separate lines
// samples:
// {id: COOLANT_THROUGH_TOOL, on: 88, off: 89}
// {id: COOLANT_THROUGH_TOOL, on: [8, 88], off: [9, 89]}
// {id: COOLANT_THROUGH_TOOL, on: "M88 P3 (myComment)", off: "M89"}
var coolants = [
  {id:COOLANT_FLOOD, on:8},
  {id:COOLANT_MIST},
  {id:COOLANT_THROUGH_TOOL, on:88, off:89},
  {id:COOLANT_AIR},
  {id:COOLANT_AIR_THROUGH_TOOL},
  {id:COOLANT_SUCTION},
  {id:COOLANT_FLOOD_MIST},
  {id:COOLANT_FLOOD_THROUGH_TOOL},
  {id:COOLANT_OFF, off:9}
];

var permittedCommentChars = " ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,=_-";

var gFormat = createFormat({prefix:"G", width:2, zeropad:true, decimals:1});
var mFormat = createFormat({prefix:"M", width:2, zeropad:true, decimals:1});
var hFormat = createFormat({prefix:"H", width:2, zeropad:true, decimals:1});
var dFormat = createFormat({prefix:"D", width:2, zeropad:true, decimals:1});
var probeWCSFormat = createFormat({decimals:0, forceDecimal:true});

var xyzFormat = createFormat({decimals:(unit == MM ? 3 : 4), forceDecimal:true});
var rFormat = xyzFormat; // radius
var abcFormat = createFormat({decimals:3, forceDecimal:true, scale:DEG});
var feedFormat = createFormat({decimals:(unit == MM ? 1 : 2), forceDecimal:true});
var pitchFormat = createFormat({decimals:(unit == MM ? 3 : 4), forceDecimal:true});
var toolFormat = createFormat({decimals:0});
var rpmFormat = createFormat({decimals:0});
var secFormat = createFormat({decimals:3, forceDecimal:true}); // seconds - range 0.001-99999.999
var milliFormat = createFormat({decimals:0}); // milliseconds // range 1-9999
var taperFormat = createFormat({decimals:1, scale:DEG});
var oFormat = createFormat({width:4, zeropad:true, decimals:0});

var xOutput = createVariable({prefix:"X"}, xyzFormat);
var yOutput = createVariable({prefix:"Y"}, xyzFormat);
var zOutput = createVariable({onchange:function() {retracted = false;}, prefix:"Z"}, xyzFormat);
var aOutput = createVariable({prefix:"A"}, abcFormat);
var bOutput = createVariable({prefix:"B"}, abcFormat);
var cOutput = createVariable({prefix:"C"}, abcFormat);
var feedOutput = createVariable({prefix:"F"}, feedFormat);
var pitchOutput = createVariable({prefix:"F", force:true}, pitchFormat);
var sOutput = createVariable({prefix:"S", force:true}, rpmFormat);
var dOutput = createVariable({}, dFormat);

// circular output
var iOutput = createReferenceVariable({prefix:"I"}, xyzFormat);
var jOutput = createReferenceVariable({prefix:"J"}, xyzFormat);
var kOutput = createReferenceVariable({prefix:"K"}, xyzFormat);

var gMotionModal = createModal({}, gFormat); // modal group 1 // G0-G3, ...
var gPlaneModal = createModal({onchange:function () {gMotionModal.reset();}}, gFormat); // modal group 2 // G17-19
var gAbsIncModal = createModal({}, gFormat); // modal group 3 // G90-91
var gFeedModeModal = createModal({}, gFormat); // modal group 5 // G94-95
var gUnitModal = createModal({}, gFormat); // modal group 6 // G20-21
var gCycleModal = createModal({}, gFormat); // modal group 9 // G81, ...
var gRetractModal = createModal({}, gFormat); // modal group 10 // G98-99
var gRotationModal = createModal({
  onchange: function () {
    if (probeVariables.probeAngleMethod == "G68") {
      probeVariables.outputRotationCodes = true;
    }
  }
}, gFormat); // modal group 16 // G68-G69

// fixed settings
var useMultiAxisFeatures = false;
var forceMultiAxisIndexing = false; // force multi-axis indexing for 3D programs
var maximumLineLength = 80; // the maximum number of charaters allowed in a line
var minimumCyclePoints = 5; // minimum number of points in cycle operation to consider for subprogram
var cancelTiltFirst = true; // cancel G68.2 with G69 prior to G54-G59 WCS block
var useABCPrepositioning = false; // position ABC axes prior to G68.2 block

var allowIndexingWCSProbing = false; // specifies that probe WCS with tool orientation is supported
var probeVariables = {
  outputRotationCodes: false, // defines if it is required to output rotation codes
  probeAngleMethod   : "OFF", // OFF, AXIS_ROT, G68, G54.4
  compensationXY     : undefined
};

var SUB_UNKNOWN = 0;
var SUB_PATTERN = 1;
var SUB_CYCLE = 2;

// collected state
var sequenceNumber;
var currentWorkOffset;
var optionalSection = false;
var forceSpindleSpeed = false;
var subprograms = [];
var currentPattern = -1;
var firstPattern = false;
var currentSubprogram;
var lastSubprogram;
var definedPatterns = new Array();
var incrementalMode = false;
var saveShowSequenceNumbers;
var cycleSubprogramIsActive = false;
var patternIsActive = false;
var lastOperationComment = "";
var incrementalSubprogram;
var retracted = false; // specifies that the tool has been retracted to the safe plane
probeMultipleFeatures = true;

/**
  Writes the specified block.
*/
function writeBlock() {
  var text = formatWords(arguments);
  if (!text) {
    return;
  }
  if (getProperty("showSequenceNumbers") == "true") {
    if (optionalSection) {
      if (text) {
        writeWords("/", "N" + sequenceNumber, text);
      }
    } else {
      writeWords2("N" + sequenceNumber, arguments);
    }
    sequenceNumber += getProperty("sequenceNumberIncrement");
  } else {
    if (optionalSection) {
      writeWords2("/", arguments);
    } else {
      writeWords(arguments);
    }
  }
}

/**
  Writes the specified optional block.
*/
function writeOptionalBlock() {
  if (getProperty("showSequenceNumbers") == "true") {
    var words = formatWords(arguments);
    if (words) {
      writeWords("/", "N" + sequenceNumber, words);
      sequenceNumber += getProperty("sequenceNumberIncrement");
    }
  } else {
    writeWords2("/", arguments);
  }
}

function formatComment(text) {
  return "(" + filterText(String(text).toUpperCase(), permittedCommentChars).replace(/[()]/g, "") + ")";
}

/**
  Writes the specified block - used for tool changes only.
*/
function writeToolBlock() {
  var show = getProperty("showSequenceNumbers");
  setProperty("showSequenceNumbers", (show == "true" || show == "toolChange") ? "true" : "false");
  writeBlock(arguments);
  setProperty("showSequenceNumbers", show);
}

/**
  Output a comment.
*/
function writeComment(text) {
  writeln(formatComment(text));
}

function onOpen() {
  if (getProperty("useRadius")) {
    maximumCircularSweep = toRad(90); // avoid potential center calculation errors for CNC
  }
  gRotationModal.format(69); // Default to G69 Rotation Off

  if (true) {
    var aAxis = createAxis({coordinate:0, table:true, axis:[(getProperty("reverseAAxis") ? -1 : 1) * -1, 0, 0], cyclic:true, preference:1});
    machineConfiguration = new MachineConfiguration(aAxis);

    setMachineConfiguration(machineConfiguration);
    optimizeMachineAngles2(1); // map tip mode
  }

  if (!machineConfiguration.isMachineCoordinate(0)) {
    aOutput.disable();
  }
  if (!machineConfiguration.isMachineCoordinate(1)) {
    bOutput.disable();
  }
  if (!machineConfiguration.isMachineCoordinate(2)) {
    cOutput.disable();
  }

  if (!getProperty("separateWordsWithSpace")) {
    setWordSeparator("");
  }

  if (getProperty("forceIJK")) {
    iOutput = createReferenceVariable({prefix:"I", force:true}, xyzFormat);
    jOutput = createReferenceVariable({prefix:"J", force:true}, xyzFormat);
    kOutput = createReferenceVariable({prefix:"K", force:true}, xyzFormat);
  }

  sequenceNumber = getProperty("sequenceNumberStart");
  writeln("%");

  if (programName) {
    var programId;
    try {
      programId = getAsInt(programName);
    } catch (e) {
      error(localize("Program name must be a number."));
      return;
    }
    if (getProperty("o8")) {
      if (!((programId >= 1) && (programId <= 99999999))) {
        error(localize("Program number is out of range."));
        return;
      }
    } else {
      if (!((programId >= 1) && (programId <= 9999))) {
        error(localize("Program number is out of range."));
        return;
      }
    }
    if ((programId >= 8000) && (programId <= 9999)) {
      warning(localize("Program number is reserved by tool builder."));
    }
    oFormat = createFormat({width:(getProperty("o8") ? 8 : 4), zeropad:true, decimals:0});
    if (programComment) {
      writeln("O" + oFormat.format(programId) + " (" + filterText(String(programComment).toUpperCase(), permittedCommentChars) + ")");
    } else {
      writeln("O" + oFormat.format(programId));
    }
    lastSubprogram = programId;
  } else {
    error(localize("Program name has not been specified."));
    return;
  }

  // dump machine configuration
  var vendor = machineConfiguration.getVendor();
  var model = machineConfiguration.getModel();
  var description = machineConfiguration.getDescription();

  if (getProperty("writeMachine") && (vendor || model || description)) {
    writeComment(localize("Machine"));
    if (vendor) {
      writeComment("  " + localize("vendor") + ": " + vendor);
    }
    if (model) {
      writeComment("  " + localize("model") + ": " + model);
    }
    if (description) {
      writeComment("  " + localize("description") + ": "  + description);
    }
  }

  // dump tool information
  if (getProperty("writeTools")) {
    var zRanges = {};
    if (is3D()) {
      var numberOfSections = getNumberOfSections();
      for (var i = 0; i < numberOfSections; ++i) {
        var section = getSection(i);
        var zRange = section.getGlobalZRange();
        var tool = section.getTool();
        if (zRanges[tool.number]) {
          zRanges[tool.number].expandToRange(zRange);
        } else {
          zRanges[tool.number] = zRange;
        }
      }
    }

    var tools = getToolTable();
    if (tools.getNumberOfTools() > 0) {
      for (var i = 0; i < tools.getNumberOfTools(); ++i) {
        var tool = tools.getTool(i);
        var comment = "T" + toolFormat.format(tool.number) + " " +
          "D=" + xyzFormat.format(tool.diameter) + " " +
          localize("CR") + "=" + xyzFormat.format(tool.cornerRadius);
        if ((tool.taperAngle > 0) && (tool.taperAngle < Math.PI)) {
          comment += " " + localize("TAPER") + "=" + taperFormat.format(tool.taperAngle) + localize("deg");
        }
        if (zRanges[tool.number]) {
          comment += " - " + localize("ZMIN") + "=" + xyzFormat.format(zRanges[tool.number].getMinimum());
        }
        comment += " - " + getToolTypeName(tool.type);
        writeComment(comment);
      }
    }
  }

  if (false) {
    // check for duplicate tool number
    for (var i = 0; i < getNumberOfSections(); ++i) {
      var sectioni = getSection(i);
      var tooli = sectioni.getTool();
      for (var j = i + 1; j < getNumberOfSections(); ++j) {
        var sectionj = getSection(j);
        var toolj = sectionj.getTool();
        if (tooli.number == toolj.number) {
          if (xyzFormat.areDifferent(tooli.diameter, toolj.diameter) ||
              xyzFormat.areDifferent(tooli.cornerRadius, toolj.cornerRadius) ||
              abcFormat.areDifferent(tooli.taperAngle, toolj.taperAngle) ||
              (tooli.numberOfFlutes != toolj.numberOfFlutes)) {
            error(
              subst(
                localize("Using the same tool number for different cutter geometry for operation '%1' and '%2'."),
                sectioni.hasParameter("operation-comment") ? sectioni.getParameter("operation-comment") : ("#" + (i + 1)),
                sectionj.hasParameter("operation-comment") ? sectionj.getParameter("operation-comment") : ("#" + (j + 1))
              )
            );
            return;
          }
        }
      }
    }
  }

  if ((getNumberOfSections() > 0) && (getSection(0).workOffset == 0)) {
    for (var i = 0; i < getNumberOfSections(); ++i) {
      if (getSection(i).workOffset > 0) {
        error(localize("Using multiple work offsets is not possible if the initial work offset is 0."));
        return;
      }
    }
  }

  // absolute coordinates and feed per min
  writeBlock(gAbsIncModal.format(90), gFeedModeModal.format(94), gPlaneModal.format(17), gFormat.format(49), gFormat.format(40), gFormat.format(80));

  switch (unit) {
  case IN:
    writeBlock(gUnitModal.format(20));
    break;
  case MM:
    writeBlock(gUnitModal.format(21));
    break;
  }

}

function onComment(message) {
  var comments = String(message).split(";");
  for (comment in comments) {
    writeComment(comments[comment]);
  }
}

/** Force output of X, Y, and Z. */
function forceXYZ() {
  xOutput.reset();
  yOutput.reset();
  zOutput.reset();
}

/** Force output of A, B, and C. */
function forceABC() {
  aOutput.reset();
  bOutput.reset();
  cOutput.reset();
}

function forceFeed() {
  previousDPMFeed = 0;
  feedOutput.reset();
}

/** Force output of X, Y, Z, A, B, C, and F on next output. */
function forceAny() {
  forceXYZ();
  forceABC();
  forceFeed();
}

var lengthCompensationActive = false;
var retracted = false; // specifies that the tool has been retracted to the safe plane

/** Disables length compensation if currently active or if forced. */
function disableLengthCompensation(force) {
  if (lengthCompensationActive || force) {
    validate(retracted, "Cannot cancel length compensation if the machine is not fully retracted.");
    writeBlock(gFormat.format(49));
    lengthCompensationActive = false;
  }
}

// Start of smoothing logic
var smoothingSettings = {
  roughing              : 1, // roughing level for smoothing in automatic mode
  semi                  : 3, // semi-roughing level for smoothing in automatic mode
  semifinishing         : 5, // semi-finishing level for smoothing in automatic mode
  finishing             : 7, // finishing level for smoothing in automatic mode
  thresholdRoughing     : toPreciseUnit(0.5, MM), // operations with stock/tolerance above that threshold will use roughing level in automatic mode
  thresholdFinishing    : toPreciseUnit(0.05, MM), // operations with stock/tolerance below that threshold will use finishing level in automatic mode
  thresholdSemiFinishing: toPreciseUnit(0.1, MM), // operations with stock/tolerance above finishing and below threshold roughing that threshold will use semi finishing level in automatic mode

  differenceCriteria: "level", // options: "level", "tolerance", "both". Specifies criteria when output smoothing codes
  autoLevelCriteria : "stock", // use "stock" or "tolerance" to determine levels in automatic mode
  cancelCompensation: true // tool length compensation must be canceled prior to changing the smoothing level
};

// collected state below, do not edit
var smoothing = {
  cancel     : false, // cancel tool length prior to update smoothing for this operation
  isActive   : false, // the current state of smoothing
  isAllowed  : false, // smoothing is allowed for this operation
  isDifferent: false, // tells if smoothing levels/tolerances/both are different between operations
  level      : -1, // the active level of smoothing
  tolerance  : -1, // the current operation tolerance
  force      : false // smoothing needs to be forced out in this operation
};

function initializeSmoothing() {
  var previousLevel = smoothing.level;
  var previousTolerance = smoothing.tolerance;

  // determine new smoothing levels and tolerances
  smoothing.level = parseInt(getProperty("useSmoothing"), 10);
  smoothing.level = isNaN(smoothing.level) ? -1 : smoothing.level;
  smoothing.tolerance = Math.max(getParameter("operation:tolerance", smoothingSettings.thresholdFinishing), 0);

  // automatically determine smoothing level
  if (smoothing.level == 9999) {
    if (smoothingSettings.autoLevelCriteria == "stock") { // determine auto smoothing level based on stockToLeave
      var stockToLeave = xyzFormat.getResultingValue(getParameter("operation:stockToLeave", 0));
      var verticalStockToLeave = xyzFormat.getResultingValue(getParameter("operation:verticalStockToLeave", 0));
      if (((stockToLeave >= smoothingSettings.thresholdRoughing) && (verticalStockToLeave >= smoothingSettings.thresholdRoughing)) ||
          getParameter("operation:strategy", "") == "face") {
        smoothing.level = smoothingSettings.roughing; // set roughing level
      } else {
        if (((stockToLeave >= smoothingSettings.thresholdSemiFinishing) && (stockToLeave < smoothingSettings.thresholdRoughing)) &&
          ((verticalStockToLeave >= smoothingSettings.thresholdSemiFinishing) && (verticalStockToLeave  < smoothingSettings.thresholdRoughing))) {
          smoothing.level = smoothingSettings.semi; // set semi level
        } else if (((stockToLeave >= smoothingSettings.thresholdFinishing) && (stockToLeave < smoothingSettings.thresholdSemiFinishing)) &&
          ((verticalStockToLeave >= smoothingSettings.thresholdFinishing) && (verticalStockToLeave  < smoothingSettings.thresholdSemiFinishing))) {
          smoothing.level = smoothingSettings.semifinishing; // set semi-finishing level
        } else {
          smoothing.level = smoothingSettings.finishing; // set finishing level
        }
      }
    } else { // detemine auto smoothing level based on operation tolerance instead of stockToLeave
      if (smoothing.tolerance >= smoothingSettings.thresholdRoughing ||
          getParameter("operation:strategy", "") == "face") {
        smoothing.level = smoothingSettings.roughing; // set roughing level
      } else {
        if (((smoothing.tolerance >= smoothingSettings.thresholdSemiFinishing) && (smoothing.tolerance < smoothingSettings.thresholdRoughing))) {
          smoothing.level = smoothingSettings.semi; // set semi level
        } else if (((smoothing.tolerance >= smoothingSettings.thresholdFinishing) && (smoothing.tolerance < smoothingSettings.thresholdSemiFinishing))) {
          smoothing.level = smoothingSettings.semifinishing; // set semi-finishing level
        } else {
          smoothing.level = smoothingSettings.finishing; // set finishing level
        }
      }
    }
  }
  if (smoothing.level == -1) { // useSmoothing is disabled
    smoothing.isAllowed = false;
  } else { // do not output smoothing for the following operations
    smoothing.isAllowed = !(currentSection.getTool().type == TOOL_PROBE || currentSection.checkGroup(STRATEGY_DRILLING));
  }
  if (!smoothing.isAllowed) {
    smoothing.level = -1;
    smoothing.tolerance = -1;
  }

  switch (smoothingSettings.differenceCriteria) {
  case "level":
    smoothing.isDifferent = smoothing.level != previousLevel;
    break;
  case "tolerance":
    smoothing.isDifferent = xyzFormat.areDifferent(smoothing.tolerance, previousTolerance);
    break;
  case "both":
    smoothing.isDifferent = smoothing.level != previousLevel || xyzFormat.areDifferent(smoothing.tolerance, previousTolerance);
    break;
  default:
    error(localize("Unsupported smoothing criteria."));
    return;
  }

  // tool length compensation needs to be canceled when smoothing state/level changes
  if (smoothingSettings.cancelCompensation) {
    smoothing.cancel = !isFirstSection() && smoothing.isDifferent;
  }
}

function setSmoothing(mode) {
  if (mode == smoothing.isActive && (!mode || !smoothing.isDifferent) && !smoothing.force) {
    return; // return if smoothing is already active or is not different
  }
  if (typeof lengthCompensationActive != "undefined" && smoothingSettings.cancelCompensation) {
    validate(!lengthCompensationActive, "Length compensation is active while trying to update smoothing.");
  }

  var useNanoSmoothing = false; // set to true use nano smoothing G5.1 Q3
  if (mode) { // enable smoothing
    if (getProperty("useSmoothing") == "0") {
      writeBlock(gFormat.format(5.1), "Q1");
    } else {
      if (!useNanoSmoothing) {
        writeBlock(gFormat.format(5.1), "Q1", "R" + smoothing.level);
      } else {
        writeBlock(
          gFormat.format(5.1), "Q3",
          "X0", "Y0", "Z0",
          conditional(currentSection.isMultiAxis() && machineConfiguration.isMachineCoordinate(0), "A0"),
          conditional(currentSection.isMultiAxis() && machineConfiguration.isMachineCoordinate(1), "B0"),
          conditional(currentSection.isMultiAxis() && machineConfiguration.isMachineCoordinate(2), "C0"),
          "R" + smoothing.level
        );
      }
    }
  } else { // disable smoothing
    writeBlock(gFormat.format(5.1), "Q0");
  }
  smoothing.isActive = mode;
  smoothing.force = false;
  smoothing.isDifferent = false;
}
// End of smoothing logic

var currentWorkPlaneABC = undefined;

function forceWorkPlane() {
  currentWorkPlaneABC = undefined;
}

function defineWorkPlane(_section, _setWorkPlane) {
  var abc = new Vector(0, 0, 0);
  if (forceMultiAxisIndexing || !is3D() || machineConfiguration.isMultiAxisConfiguration()) { // use 5-axis indexing for multi-axis mode
    // set working plane after datum shift

    if (_section.isMultiAxis()) {
      cancelTransformation();
      abc = _section.getInitialToolAxisABC();
      if (_setWorkPlane) {
        if (!retracted) {
          writeRetract(Z);
        }
        forceWorkPlane();
        onCommand(COMMAND_UNLOCK_MULTI_AXIS);
        gMotionModal.reset();
        writeBlock(
          gMotionModal.format(0),
          conditional(machineConfiguration.isMachineCoordinate(0), "A" + abcFormat.format(abc.x)),
          conditional(machineConfiguration.isMachineCoordinate(1), "B" + abcFormat.format(abc.y)),
          conditional(machineConfiguration.isMachineCoordinate(2), "C" + abcFormat.format(abc.z))
        );
      }
    } else {
      if (useMultiAxisFeatures) {
        var euler = _section.workPlane.getEuler2(EULER_ZXZ_R);
        abc = new Vector(euler.x, euler.y, euler.z);
        cancelTransformation();
      } else {
        abc = getWorkPlaneMachineABC(_section.workPlane, _setWorkPlane, true);
      }
      if (_setWorkPlane) {
        setWorkPlane(abc);
      }
    }
  } else { // pure 3D
    var remaining = _section.workPlane;
    if (!isSameDirection(remaining.forward, new Vector(0, 0, 1))) {
      error(localize("Tool orientation is not supported."));
      return abc;
    }
    setRotation(remaining);
  }
  return abc;
}

function cancelWorkPlane(force) {
  if (force) {
    gRotationModal.reset();
  }
  writeBlock(gRotationModal.format(69)); // cancel frame
  forceWorkPlane();
}

function setWorkPlane(abc) {
  if (!forceMultiAxisIndexing && is3D() && !machineConfiguration.isMultiAxisConfiguration()) {
    return; // ignore
  }

  if (!((currentWorkPlaneABC == undefined) ||
        abcFormat.areDifferent(abc.x, currentWorkPlaneABC.x) ||
        abcFormat.areDifferent(abc.y, currentWorkPlaneABC.y) ||
        abcFormat.areDifferent(abc.z, currentWorkPlaneABC.z))) {
    return; // no change
  }

  onCommand(COMMAND_UNLOCK_MULTI_AXIS);
  if (!retracted) {
    writeRetract(Z);
  }

  if (useMultiAxisFeatures) {
    if (cancelTiltFirst) {
      cancelWorkPlane();
    }
    if (machineConfiguration.isMultiAxisConfiguration() && (useABCPrepositioning || abc.isZero())) {
      var angles = abc.isNonZero() ? getWorkPlaneMachineABC(currentSection.workPlane, false, false) : abc;
      gMotionModal.reset();
      writeBlock(
        gMotionModal.format(0),
        conditional(machineConfiguration.isMachineCoordinate(0), "A" + abcFormat.format(angles.x)),
        conditional(machineConfiguration.isMachineCoordinate(1), "B" + abcFormat.format(angles.y)),
        conditional(machineConfiguration.isMachineCoordinate(2), "C" + abcFormat.format(angles.z))
      );
    }
    if (abc.isNonZero()) {
      gRotationModal.reset();
      writeBlock(gRotationModal.format(68.2), "X" + xyzFormat.format(0), "Y" + xyzFormat.format(0), "Z" + xyzFormat.format(0), "A" + abcFormat.format(abc.x), "B" + abcFormat.format(abc.y), "C" + abcFormat.format(abc.z)); // set frame
      writeBlock(gFormat.format(53.1)); // turn machine
    } else {
      if (!cancelTiltFirst) {
        cancelWorkPlane();
      }
    }
  } else {
    gMotionModal.reset();
    writeBlock(
      gMotionModal.format(0),
      conditional(machineConfiguration.isMachineCoordinate(0), "A" + abcFormat.format(abc.x)),
      conditional(machineConfiguration.isMachineCoordinate(1), "B" + abcFormat.format(abc.y)),
      conditional(machineConfiguration.isMachineCoordinate(2), "C" + abcFormat.format(abc.z))
    );
  }

  onCommand(COMMAND_LOCK_MULTI_AXIS);

  currentWorkPlaneABC = abc;
}

var closestABC = false; // choose closest machine angles
var currentMachineABC;

function getWorkPlaneMachineABC(workPlane, _setWorkPlane, rotate) {
  var W = workPlane; // map to global frame

  var abc = machineConfiguration.getABC(W);
  if (closestABC) {
    if (currentMachineABC) {
      abc = machineConfiguration.remapToABC(abc, currentMachineABC);
    } else {
      abc = machineConfiguration.getPreferredABC(abc);
    }
  } else {
    abc = machineConfiguration.getPreferredABC(abc);
  }

  try {
    abc = machineConfiguration.remapABC(abc);
    if (_setWorkPlane) {
      currentMachineABC = abc;
    }
  } catch (e) {
    error(
      localize("Machine angles not supported") + ":"
      + conditional(machineConfiguration.isMachineCoordinate(0), " A" + abcFormat.format(abc.x))
      + conditional(machineConfiguration.isMachineCoordinate(1), " B" + abcFormat.format(abc.y))
      + conditional(machineConfiguration.isMachineCoordinate(2), " C" + abcFormat.format(abc.z))
    );
  }

  var direction = machineConfiguration.getDirection(abc);
  if (!isSameDirection(direction, W.forward)) {
    error(localize("Orientation not supported."));
  }

  if (!machineConfiguration.isABCSupported(abc)) {
    error(
      localize("Work plane is not supported") + ":"
      + conditional(machineConfiguration.isMachineCoordinate(0), " A" + abcFormat.format(abc.x))
      + conditional(machineConfiguration.isMachineCoordinate(1), " B" + abcFormat.format(abc.y))
      + conditional(machineConfiguration.isMachineCoordinate(2), " C" + abcFormat.format(abc.z))
    );
  }

  if (rotate) {
    var tcp = false;
    if (tcp) {
      setRotation(W); // TCP mode
    } else {
      var O = machineConfiguration.getOrientation(abc);
      var R = machineConfiguration.getRemainingOrientation(abc, W);
      setRotation(R);
    }
  }

  return abc;
}

function printProbeResults() {
  return currentSection.getParameter("printResults", 0) == 1;
}

/** Returns true if the spatial vectors are significantly different. */
function areSpatialVectorsDifferent(_vector1, _vector2) {
  return (xyzFormat.getResultingValue(_vector1.x) != xyzFormat.getResultingValue(_vector2.x)) ||
    (xyzFormat.getResultingValue(_vector1.y) != xyzFormat.getResultingValue(_vector2.y)) ||
    (xyzFormat.getResultingValue(_vector1.z) != xyzFormat.getResultingValue(_vector2.z));
}

/** Returns true if the spatial boxes are a pure translation. */
function areSpatialBoxesTranslated(_box1, _box2) {
  return !areSpatialVectorsDifferent(Vector.diff(_box1[1], _box1[0]), Vector.diff(_box2[1], _box2[0])) &&
    !areSpatialVectorsDifferent(Vector.diff(_box2[0], _box1[0]), Vector.diff(_box2[1], _box1[1]));
}

/** Returns true if the spatial boxes are same. */
function areSpatialBoxesSame(_box1, _box2) {
  return !areSpatialVectorsDifferent(_box1[0], _box2[0]) && !areSpatialVectorsDifferent(_box1[1], _box2[1]);
}

function subprogramDefine(_initialPosition, _abc, _retracted, _zIsOutput) {
  // convert patterns into subprograms
  var usePattern = false;
  patternIsActive = false;
  if (currentSection.isPatterned && currentSection.isPatterned() && (getProperty("useSubroutines") == "patterns")) {
    currentPattern = currentSection.getPatternId();
    firstPattern = true;
    for (var i = 0; i < definedPatterns.length; ++i) {
      if ((definedPatterns[i].patternType == SUB_PATTERN) && (currentPattern == definedPatterns[i].patternId)) {
        currentSubprogram = definedPatterns[i].subProgram;
        usePattern = definedPatterns[i].validPattern;
        firstPattern = false;
        break;
      }
    }

    if (firstPattern) {
      // determine if this is a valid pattern for creating a subprogram
      usePattern = subprogramIsValid(currentSection, currentPattern, SUB_PATTERN);
      if (usePattern) {
        currentSubprogram = ++lastSubprogram;
      }
      definedPatterns.push({
        patternType    : SUB_PATTERN,
        patternId      : currentPattern,
        subProgram     : currentSubprogram,
        validPattern   : usePattern,
        initialPosition: _initialPosition,
        finalPosition  : _initialPosition
      });
    }

    if (usePattern) {
      // make sure Z-position is output prior to subprogram call
      if (!_retracted && !_zIsOutput) {
        writeBlock(gMotionModal.format(0), zOutput.format(_initialPosition.z));
      }

      // call subprogram
      writeBlock(mFormat.format(98), "P" + oFormat.format(currentSubprogram));
      patternIsActive = true;

      if (firstPattern) {
        subprogramStart(_initialPosition, _abc, incrementalSubprogram);
      } else {
        skipRemainingSection();
        setCurrentPosition(getFramePosition(currentSection.getFinalPosition()));
      }
    }
  }

  // Output cycle operation as subprogram
  if (!usePattern && (getProperty("useSubroutines") == "cycles") && currentSection.doesStrictCycle &&
      (currentSection.getNumberOfCycles() == 1) && currentSection.getNumberOfCyclePoints() >= minimumCyclePoints) {
    var finalPosition = getFramePosition(currentSection.getFinalPosition());
    currentPattern = currentSection.getNumberOfCyclePoints();
    firstPattern = true;
    for (var i = 0; i < definedPatterns.length; ++i) {
      if ((definedPatterns[i].patternType == SUB_CYCLE) && (currentPattern == definedPatterns[i].patternId) &&
          !areSpatialVectorsDifferent(_initialPosition, definedPatterns[i].initialPosition) &&
          !areSpatialVectorsDifferent(finalPosition, definedPatterns[i].finalPosition)) {
        currentSubprogram = definedPatterns[i].subProgram;
        usePattern = definedPatterns[i].validPattern;
        firstPattern = false;
        break;
      }
    }

    if (firstPattern) {
      // determine if this is a valid pattern for creating a subprogram
      usePattern = subprogramIsValid(currentSection, currentPattern, SUB_CYCLE);
      if (usePattern) {
        currentSubprogram = ++lastSubprogram;
      }
      definedPatterns.push({
        patternType    : SUB_CYCLE,
        patternId      : currentPattern,
        subProgram     : currentSubprogram,
        validPattern   : usePattern,
        initialPosition: _initialPosition,
        finalPosition  : finalPosition
      });
    }
    cycleSubprogramIsActive = usePattern;
  }

  // Output each operation as a subprogram
  if (!usePattern && (getProperty("useSubroutines") == "allOperations")) {
    currentSubprogram = ++lastSubprogram;
    writeBlock(mFormat.format(98), "P" + oFormat.format(currentSubprogram));
    firstPattern = true;
    subprogramStart(_initialPosition, _abc, false);
  }
}

function subprogramStart(_initialPosition, _abc, _incremental) {
  if (getProperty("useFilesForSubprograms")) {
    var path = FileSystem.getCombinedPath(FileSystem.getFolderPath(getOutputPath()), currentSubprogram + "." + extension);
    redirectToFile(path);
    writeln("%");
  } else {
    redirectToBuffer();
  }
  var comment = "";
  if (hasParameter("operation-comment")) {
    comment = getParameter("operation-comment");
  }
  writeln(
    "O" + oFormat.format(currentSubprogram) +
    conditional(comment, formatComment(comment.substr(0, maximumLineLength - 2 - 6 - 1)))
  );
  saveShowSequenceNumbers = getProperty("showSequenceNumbers");
  setProperty("showSequenceNumbers", "false");
  if (_incremental) {
    setIncrementalMode(_initialPosition, _abc);
  }
  gPlaneModal.reset();
  gMotionModal.reset();
}

function subprogramEnd() {
  if (firstPattern) {
    writeBlock(mFormat.format(99));
    if (getProperty("useFilesForSubprograms")) {
      writeln("%");
    } else {
      writeln("");
      subprograms += getRedirectionBuffer();
    }
  }
  forceAny();
  firstPattern = false;
  setProperty("showSequenceNumbers", saveShowSequenceNumbers);
  closeRedirection();
}

function subprogramIsValid(_section, _patternId, _patternType) {
  var sectionId = _section.getId();
  var numberOfSections = getNumberOfSections();
  var validSubprogram = _patternType != SUB_CYCLE;

  var masterPosition = new Array();
  masterPosition[0] = getFramePosition(_section.getInitialPosition());
  masterPosition[1] = getFramePosition(_section.getFinalPosition());
  var tempBox = _section.getBoundingBox();
  var masterBox = new Array();
  masterBox[0] = getFramePosition(tempBox[0]);
  masterBox[1] = getFramePosition(tempBox[1]);

  var rotation = getRotation();
  var translation = getTranslation();
  incrementalSubprogram = undefined;

  for (var i = 0; i < numberOfSections; ++i) {
    var section = getSection(i);
    if (section.getId() != sectionId) {
      defineWorkPlane(section, false);
      // check for valid pattern
      if (_patternType == SUB_PATTERN) {
        if (section.getPatternId() == _patternId) {
          var patternPosition = new Array();
          patternPosition[0] = getFramePosition(section.getInitialPosition());
          patternPosition[1] = getFramePosition(section.getFinalPosition());
          tempBox = section.getBoundingBox();
          var patternBox = new Array();
          patternBox[0] = getFramePosition(tempBox[0]);
          patternBox[1] = getFramePosition(tempBox[1]);

          if (areSpatialBoxesSame(masterPosition, patternPosition) && areSpatialBoxesSame(masterBox, patternBox) && !section.isMultiAxis()) {
            incrementalSubprogram = incrementalSubprogram ? incrementalSubprogram : false;
          } else if (!areSpatialBoxesTranslated(masterPosition, patternPosition) || !areSpatialBoxesTranslated(masterBox, patternBox)) {
            validSubprogram = false;
            break;
          } else {
            incrementalSubprogram = true;
          }
        }

      // check for valid cycle operation
      } else if (_patternType == SUB_CYCLE) {
        if ((section.getNumberOfCyclePoints() == _patternId) && (section.getNumberOfCycles() == 1)) {
          var patternInitial = getFramePosition(section.getInitialPosition());
          var patternFinal = getFramePosition(section.getFinalPosition());
          if (!areSpatialVectorsDifferent(patternInitial, masterPosition[0]) && !areSpatialVectorsDifferent(patternFinal, masterPosition[1])) {
            validSubprogram = true;
            break;
          }
        }
      }
    }
  }
  setRotation(rotation);
  setTranslation(translation);
  return (validSubprogram);
}

function setAxisMode(_format, _output, _prefix, _value, _incr) {
  var i = _output.isEnabled();
  if (_output == zOutput) {
    _output = _incr ? createIncrementalVariable({onchange:function() {retracted = false;}, prefix:_prefix}, _format) : createVariable({onchange:function() {retracted = false;}, prefix:_prefix}, _format);
  } else {
    _output = _incr ? createIncrementalVariable({prefix:_prefix}, _format) : createVariable({prefix:_prefix}, _format);
  }
  _output.format(_value);
  _output.format(_value);
  i = i ? _output.enable() : _output.disable();
  return _output;
}

function setIncrementalMode(xyz, abc) {
  xOutput = setAxisMode(xyzFormat, xOutput, "X", xyz.x, true);
  yOutput = setAxisMode(xyzFormat, yOutput, "Y", xyz.y, true);
  zOutput = setAxisMode(xyzFormat, zOutput, "Z", xyz.z, true);
  aOutput = setAxisMode(abcFormat, aOutput, "A", abc.x, true);
  bOutput = setAxisMode(abcFormat, bOutput, "B", abc.y, true);
  cOutput = setAxisMode(abcFormat, cOutput, "C", abc.z, true);
  gAbsIncModal.reset();
  writeBlock(gAbsIncModal.format(91));
  incrementalMode = true;
}

function setAbsoluteMode(xyz, abc) {
  if (incrementalMode) {
    xOutput = setAxisMode(xyzFormat, xOutput, "X", xyz.x, false);
    yOutput = setAxisMode(xyzFormat, yOutput, "Y", xyz.y, false);
    zOutput = setAxisMode(xyzFormat, zOutput, "Z", xyz.z, false);
    aOutput = setAxisMode(abcFormat, aOutput, "A", abc.x, false);
    bOutput = setAxisMode(abcFormat, bOutput, "B", abc.y, false);
    cOutput = setAxisMode(abcFormat, cOutput, "C", abc.z, false);
    gAbsIncModal.reset();
    writeBlock(gAbsIncModal.format(90));
    incrementalMode = false;
  }
}

function onSection() {
  var forceToolAndRetract = optionalSection && !currentSection.isOptional();
  optionalSection = currentSection.isOptional();

  var insertToolCall = forceToolAndRetract || isFirstSection() ||
    currentSection.getForceToolChange && currentSection.getForceToolChange() ||
    (tool.number != getPreviousSection().getTool().number);

  var newWorkOffset = isFirstSection() ||
    (getPreviousSection().workOffset != currentSection.workOffset); // work offset changes
  var newWorkPlane = isFirstSection() ||
    !isSameDirection(getPreviousSection().getGlobalFinalToolAxis(), currentSection.getGlobalInitialToolAxis()) ||
    (currentSection.isOptimizedForMachine() && getPreviousSection().isOptimizedForMachine() &&
      Vector.diff(getPreviousSection().getFinalToolAxisABC(), currentSection.getInitialToolAxisABC()).length > 1e-4) ||
    (!machineConfiguration.isMultiAxisConfiguration() && currentSection.isMultiAxis()) ||
    (!getPreviousSection().isMultiAxis() && currentSection.isMultiAxis() ||
      getPreviousSection().isMultiAxis() && !currentSection.isMultiAxis()); // force newWorkPlane between indexing and simultaneous operations
  var zIsOutput = false; // true if the Z-position has been output, used for patterns

  // define smoothing mode
  initializeSmoothing();

  if (insertToolCall || newWorkOffset || newWorkPlane || smoothing.cancel) {
    // stop spindle before retract during tool change
    if (insertToolCall && !isFirstSection()) {
      onCommand(COMMAND_STOP_SPINDLE);
    }

    // retract to safe plane
    writeRetract(Z);
    forceXYZ();
    if ((insertToolCall && !isFirstSection()) || smoothing.cancel) {
      disableLengthCompensation();
      setSmoothing(false);
    }
  }

  if (hasParameter("operation-comment")) {
    var comment = getParameter("operation-comment");
    if (comment && ((comment !== lastOperationComment) || !patternIsActive || insertToolCall)) {
      writeln("");
      writeComment(comment);
      lastOperationComment = comment;
    } else if (!patternIsActive || insertToolCall) {
      writeln("");
    }
  } else {
    writeln("");
  }

  if (getProperty("showNotes") && hasParameter("notes")) {
    var notes = getParameter("notes");
    if (notes) {
      var lines = String(notes).split("\n");
      var r1 = new RegExp("^[\\s]+", "g");
      var r2 = new RegExp("[\\s]+$", "g");
      for (line in lines) {
        var comment = lines[line].replace(r1, "").replace(r2, "");
        if (comment) {
          writeComment(comment);
        }
      }
    }
  }

  if (insertToolCall) {
    forceWorkPlane();

    setCoolant(COOLANT_OFF);

    if (!isFirstSection() && getProperty("optionalStop")) {
      onCommand(COMMAND_OPTIONAL_STOP);
    }

    if (tool.number > 99) {
      warning(localize("Tool number exceeds maximum value."));
    }

    disableLengthCompensation();
    writeToolBlock("T" + toolFormat.format(tool.number), mFormat.format(6));
    if (tool.comment) {
      writeComment(tool.comment);
    }
    var showToolZMin = false;
    if (showToolZMin) {
      if (is3D()) {
        var numberOfSections = getNumberOfSections();
        var zRange = currentSection.getGlobalZRange();
        var number = tool.number;
        for (var i = currentSection.getId() + 1; i < numberOfSections; ++i) {
          var section = getSection(i);
          if (section.getTool().number != number) {
            break;
          }
          zRange.expandToRange(section.getGlobalZRange());
        }
        writeComment(localize("ZMIN") + "=" + zRange.getMinimum());
      }
    }

    if (getProperty("preloadTool")) {
      var nextTool = getNextTool(tool.number);
      if (nextTool) {
        writeBlock("T" + toolFormat.format(nextTool.number));
      } else {
        // preload first tool
        var section = getSection(0);
        var firstToolNumber = section.getTool().number;
        if (tool.number != firstToolNumber) {
          writeBlock("T" + toolFormat.format(firstToolNumber));
        }
      }
    }
  }

  var spindleChanged = tool.type != TOOL_PROBE &&
    (insertToolCall || forceSpindleSpeed || isFirstSection() ||
    (rpmFormat.areDifferent(spindleSpeed, sOutput.getCurrent())) ||
    (tool.clockwise != getPreviousSection().getTool().clockwise));
  if (spindleChanged) {
    forceSpindleSpeed = false;

    if (spindleSpeed < 1) {
      error(localize("Spindle speed out of range."));
      return;
    }
    if (spindleSpeed > 99999) {
      warning(localize("Spindle speed exceeds maximum value."));
    }
    var tapping = hasParameter("operation:cycleType") &&
      ((getParameter("operation:cycleType") == "tapping") ||
      (getParameter("operation:cycleType") == "right-tapping") ||
      (getParameter("operation:cycleType") == "left-tapping") ||
      (getParameter("operation:cycleType") == "tapping-with-chip-breaking"));
    if (!tapping || (tapping && !(getProperty("useRigidTapping") == "without"))) {
      writeBlock(
        sOutput.format(spindleSpeed), mFormat.format(tool.clockwise ? 3 : 4)
      );
    }

    onCommand(COMMAND_START_CHIP_TRANSPORT);
    if (forceMultiAxisIndexing || !is3D() || machineConfiguration.isMultiAxisConfiguration()) {
      // writeBlock(mFormat.format(xxx)); // shortest path traverse
    }
  }

  // wcs
  if (insertToolCall) { // force work offset when changing tool
    currentWorkOffset = undefined;
  }

  if (currentSection.workOffset != currentWorkOffset) {
    if (cancelTiltFirst) {
      cancelWorkPlane();
    }
    forceWorkPlane();

    writeBlock(currentSection.wcs);
    currentWorkOffset = currentSection.workOffset;
  }

  forceXYZ();

  var abc = defineWorkPlane(currentSection, true);

  setProbeAngle(); // output probe angle rotations if required

  // set coolant after we have positioned at Z
  setCoolant(tool.coolant);

  setSmoothing(smoothing.isAllowed);

  forceAny();
  gMotionModal.reset();

  var initialPosition = getFramePosition(currentSection.getInitialPosition());
  if (!retracted && !insertToolCall) {
    if (getCurrentPosition().z < initialPosition.z) {
      writeBlock(gMotionModal.format(0), zOutput.format(initialPosition.z));
      zIsOutput = true;
    }
  }

  if (insertToolCall || !lengthCompensationActive || retracted || (!isFirstSection() && getPreviousSection().isMultiAxis())) {
    var lengthOffset = tool.lengthOffset;
    if (lengthOffset > 99) {
      error(localize("Length offset out of range."));
      return;
    }

    gMotionModal.reset();
    writeBlock(gPlaneModal.format(17));

    if (!machineConfiguration.isHeadConfiguration()) {
      writeBlock(
        gAbsIncModal.format(90),
        gMotionModal.format(0), xOutput.format(initialPosition.x), yOutput.format(initialPosition.y)
      );
      writeBlock(gMotionModal.format(0), gFormat.format(43), zOutput.format(initialPosition.z), hFormat.format(lengthOffset));
      lengthCompensationActive = true;
    } else {
      writeBlock(
        gAbsIncModal.format(90),
        gMotionModal.format(0),
        gFormat.format(43), xOutput.format(initialPosition.x),
        yOutput.format(initialPosition.y),
        zOutput.format(initialPosition.z), hFormat.format(lengthOffset)
      );
      lengthCompensationActive = true;
    }
    zIsOutput = true;

    gMotionModal.reset();
  } else {
    writeBlock(
      gAbsIncModal.format(90),
      gMotionModal.format(0),
      xOutput.format(initialPosition.x),
      yOutput.format(initialPosition.y)
    );
  }

  validate(lengthCompensationActive, "Length compensation is not active.");

  if (isProbeOperation()) {
    validate(probeVariables.probeAngleMethod != "G68", "You cannot probe while G68 Rotation is in effect.");
    validate(probeVariables.probeAngleMethod != "G54.4", "You cannot probe while workpiece setting error compensation G54.4 is enabled.");
    writeBlock(gFormat.format(65), "P" + 9832); // spin the probe on
    inspectionCreateResultsFileHeader();
  }

  // define subprogram
  subprogramDefine(initialPosition, abc, retracted, zIsOutput);

  retracted = false;
}

function onDwell(seconds) {
  if (seconds > 99999.999) {
    warning(localize("Dwelling time is out of range."));
  }
  milliseconds = clamp(1, seconds * 1000, 99999999);
  writeBlock(gFeedModeModal.format(94), gFormat.format(4), "P" + milliFormat.format(milliseconds));
}

function onSpindleSpeed(spindleSpeed) {
  writeBlock(sOutput.format(spindleSpeed));
}

function onCycle() {
  writeBlock(gPlaneModal.format(17));
}

function getCommonCycle(x, y, z, r, c) {
  forceXYZ(); // force xyz on first drill hole of any cycle
  if (incrementalMode) {
    zOutput.format(c);
    return [xOutput.format(x), yOutput.format(y),
      "Z" + xyzFormat.format(z - r),
      "R" + xyzFormat.format(r - c)];
  } else {
    return [xOutput.format(x), yOutput.format(y),
      zOutput.format(z),
      "R" + xyzFormat.format(r)];
  }
}

function setCyclePosition(_position) {
  switch (gPlaneModal.getCurrent()) {
  case 17: // XY
    zOutput.format(_position);
    break;
  case 18: // ZX
    yOutput.format(_position);
    break;
  case 19: // YZ
    xOutput.format(_position);
    break;
  }
}

/** Convert approach to sign. */
function approach(value) {
  validate((value == "positive") || (value == "negative"), "Invalid approach.");
  return (value == "positive") ? 1 : -1;
}

function setProbeAngleMethod() {
  probeVariables.probeAngleMethod = (machineConfiguration.getNumberOfAxes() < 5 || is3D()) ? (getProperty("useG54x4") ? "G54.4" : "G68") : "UNSUPPORTED";
  var axes = [machineConfiguration.getAxisU(), machineConfiguration.getAxisV(), machineConfiguration.getAxisW()];
  for (var i = 0; i < axes.length; ++i) {
    if (axes[i].isEnabled() && isSameDirection((axes[i].getAxis()).getAbsolute(), new Vector(0, 0, 1)) && axes[i].isTable()) {
      probeVariables.probeAngleMethod = "AXIS_ROT";
      break;
    }
  }
  probeVariables.outputRotationCodes = true;
}

/** Output rotation offset based on angular probing cycle. */
function setProbeAngle() {
  if (probeVariables.outputRotationCodes) {
    var probeOutputWorkOffset = currentSection.probeWorkOffset;
    validate(probeOutputWorkOffset <= 6, "Angular Probing only supports work offsets 1-6.");
    if (probeVariables.probeAngleMethod == "G68" && (Vector.diff(currentSection.getGlobalInitialToolAxis(), new Vector(0, 0, 1)).length > 1e-4)) {
      error(localize("You cannot use multi axis toolpaths while G68 Rotation is in effect."));
    }
    var validateWorkOffset = false;
    switch (probeVariables.probeAngleMethod) {
    case "G54.4":
      var param = 26000 + (probeOutputWorkOffset * 10);
      writeBlock("#" + param + "=#135");
      writeBlock("#" + (param + 1) + "=#136");
      writeBlock("#" + (param + 5) + "=#144");
      writeBlock(gFormat.format(54.4), "P" + probeOutputWorkOffset);
      break;
    case "G68":
      gRotationModal.reset();
      gAbsIncModal.reset();
      var n = xyzFormat.format(0);
      writeBlock(
        gRotationModal.format(68), gAbsIncModal.format(90),
        probeVariables.compensationXY, "Z" + n, "I" + n, "J" + n, "K" + xyzFormat.format(1), "R[#144]"
      );
      validateWorkOffset = true;
      break;
    case "AXIS_ROT":
      var param = 5200 + probeOutputWorkOffset * 20 + 5;
      writeBlock("#" + param + " = " + "[#" + param + " + #144]");
      forceWorkPlane(); // force workplane to rotate ABC in order to apply rotation offsets
      currentWorkOffset = undefined; // force WCS output to make use of updated parameters
      validateWorkOffset = true;
      break;
    default:
      error(localize("Angular Probing is not supported for this machine configuration."));
      return;
    }
    if (validateWorkOffset) {
      for (var i = currentSection.getId(); i < getNumberOfSections(); ++i) {
        if (getSection(i).workOffset != currentSection.workOffset) {
          error(localize("WCS offset cannot change while using angle rotation compensation."));
          return;
        }
      }
    }
    probeVariables.outputRotationCodes = false;
  }
}

function protectedProbeMove(_cycle, x, y, z) {
  var _x = xOutput.format(x);
  var _y = yOutput.format(y);
  var _z = zOutput.format(z);
  if (_z && z >= getCurrentPosition().z) {
    writeBlock(gFormat.format(65), "P" + 9810, _z, feedOutput.format(cycle.feedrate)); // protected positioning move
  }
  if (_x || _y) {
    writeBlock(gFormat.format(65), "P" + 9810, _x, _y, feedOutput.format(highFeedrate)); // protected positioning move
  }
  if (_z && z < getCurrentPosition().z) {
    writeBlock(gFormat.format(65), "P" + 9810, _z, feedOutput.format(cycle.feedrate)); // protected positioning move
  }
}

function onCyclePoint(x, y, z) {
  if (!isSameDirection(getRotation().forward, new Vector(0, 0, 1))) {
    expandCyclePoint(x, y, z);
    return;
  }

  if (isProbeOperation()) {
    if (!useMultiAxisFeatures && !isSameDirection(currentSection.workPlane.forward, new Vector(0, 0, 1))) {
      if (!allowIndexingWCSProbing && currentSection.strategy == "probe") {
        error(localize("Updating WCS / work offset using probing is only supported by the CNC in the WCS frame."));
        return;
      }
    }
    if (printProbeResults()) {
      writeProbingToolpathInformation(z - cycle.depth + tool.diameter / 2);
      inspectionWriteCADTransform();
      inspectionWriteWorkplaneTransform();
      if (typeof inspectionWriteVariables == "function") {
        inspectionVariables.pointNumber += 1;
      }
    }
    protectedProbeMove(cycle, x, y, z);
  }

  if (isFirstCyclePoint() || isProbeOperation()) {
    if (!isProbeOperation()) {
      // return to initial Z which is clearance plane and set absolute mode
      repositionToCycleClearance(cycle, x, y, z);
    }

    var F = cycle.feedrate;
    var P = !cycle.dwell ? 0 : clamp(1, cycle.dwell * 1000, 99999999); // in milliseconds

    switch (cycleType) {
    case "drilling":
      writeBlock(
        gRetractModal.format(98), gCycleModal.format(81),
        getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
        feedOutput.format(F)
      );
      break;
    case "counter-boring":
      if (P > 0) {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(82),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P),
          feedOutput.format(F)
        );
      } else {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(81),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          feedOutput.format(F)
        );
      }
      break;
    case "chip-breaking":
      if ((cycle.accumulatedDepth < cycle.depth) || (P > 0)) {
        expandCyclePoint(x, y, z);
      } else {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(73),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "Q" + xyzFormat.format(cycle.incrementalDepth),
          feedOutput.format(F)
        );
      }
      break;
    case "deep-drilling":
      if (P > 0) {
        expandCyclePoint(x, y, z);
      } else {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(83),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "Q" + xyzFormat.format(cycle.incrementalDepth),
          // conditional(P > 0, "P" + milliFormat.format(P)),
          feedOutput.format(F)
        );
      }
      break;
    case "tapping":
      if (getProperty("useRigidTapping") != "no") {
        writeBlock(mFormat.format(29), sOutput.format(spindleSpeed));
      }
      if (getProperty("usePitchForTapping")) {
        writeBlock(
          gRetractModal.format(98), gFeedModeModal.format(95), gCycleModal.format((tool.type == TOOL_TAP_LEFT_HAND) ? 74 : 84),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P),
          pitchOutput.format(tool.threadPitch)
        );
        forceFeed();
      } else {
        var tappingFPM = tool.getThreadPitch() * rpmFormat.getResultingValue(spindleSpeed);
        F = (tappingFPM);
        writeBlock(
          gRetractModal.format(98), gCycleModal.format((tool.type == TOOL_TAP_LEFT_HAND) ? 74 : 84),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P),
          feedOutput.format(F)
        );
      }
      break;
    case "left-tapping":
      if (getProperty("useRigidTapping") != "no") {
        writeBlock(mFormat.format(29), sOutput.format(spindleSpeed));
      }
      if (getProperty("usePitchForTapping")) {
        writeBlock(
          gRetractModal.format(98), gFeedModeModal.format(95), gCycleModal.format(74),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P),
          pitchOutput.format(tool.threadPitch)
        );
        forceFeed();
      } else {
        var tappingFPM = tool.getThreadPitch() * rpmFormat.getResultingValue(spindleSpeed);
        F = (tappingFPM);
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(74),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P),
          feedOutput.format(F)
        );
      }
      break;
    case "right-tapping":
      if (getProperty("useRigidTapping") != "no") {
        writeBlock(mFormat.format(29), sOutput.format(spindleSpeed));
      }
      if (getProperty("usePitchForTapping")) {
        writeBlock(
          gRetractModal.format(98), gFeedModeModal.format(95), gCycleModal.format(84),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P),
          pitchOutput.format(tool.threadPitch)
        );
        forceFeed();
      } else {
        var tappingFPM = tool.getThreadPitch() * rpmFormat.getResultingValue(spindleSpeed);
        F = (tappingFPM);
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(84),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P),
          feedOutput.format(F)
        );
      }
      break;
    case "tapping-with-chip-breaking":
    case "left-tapping-with-chip-breaking":
    case "right-tapping-with-chip-breaking":
      if (cycle.accumulatedDepth < cycle.depth) {
        error(localize("Accumulated pecking depth is not supported for tapping cycles with chip breaking."));
        return;
      } else {
        if (getProperty("useRigidTapping") != "no") {
          writeBlock(mFormat.format(29), sOutput.format(spindleSpeed));
        }
        if (getProperty("usePitchForTapping")) {
          writeBlock(
            gRetractModal.format(98), gFeedModeModal.format(95), gCycleModal.format((tool.type == TOOL_TAP_LEFT_HAND ? 74 : 84)),
            getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
            "P" + milliFormat.format(P),
            "Q" + xyzFormat.format(cycle.incrementalDepth),
            pitchOutput.format(tool.threadPitch)
          );
          forceFeed();
        } else {
          var tappingFPM = tool.getThreadPitch() * rpmFormat.getResultingValue(spindleSpeed);
          F = (tappingFPM);
          writeBlock(
            gRetractModal.format(98), gCycleModal.format((tool.type == TOOL_TAP_LEFT_HAND ? 74 : 84)),
            getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
            "P" + milliFormat.format(P),
            "Q" + xyzFormat.format(cycle.incrementalDepth),
            feedOutput.format(F)
          );
        }
      }
      break;
    case "fine-boring":
      writeBlock(
        gRetractModal.format(98), gCycleModal.format(76),
        getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
        "P" + milliFormat.format(P), // not optional
        "Q" + xyzFormat.format(cycle.shift),
        feedOutput.format(F)
      );
      break;
    case "back-boring":
      var dx = (gPlaneModal.getCurrent() == 19) ? cycle.backBoreDistance : 0;
      var dy = (gPlaneModal.getCurrent() == 18) ? cycle.backBoreDistance : 0;
      var dz = (gPlaneModal.getCurrent() == 17) ? cycle.backBoreDistance : 0;
      writeBlock(
        gRetractModal.format(98), gCycleModal.format(87),
        getCommonCycle(x - dx, y - dy, z - dz, cycle.bottom, cycle.clearance),
        "Q" + xyzFormat.format(cycle.shift),
        "P" + milliFormat.format(P), // not optional
        feedOutput.format(F)
      );
      break;
    case "reaming":
      if (feedFormat.getResultingValue(cycle.feedrate) != feedFormat.getResultingValue(cycle.retractFeedrate)) {
        expandCyclePoint(x, y, z);
        break;
      }
      if (P > 0) {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(89),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P),
          feedOutput.format(F)
        );
      } else {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(85),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          feedOutput.format(F)
        );
      }
      break;
    case "stop-boring":
      if (P > 0) {
        expandCyclePoint(x, y, z);
      } else {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(86),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          feedOutput.format(F)
        );
      }
      break;
    case "manual-boring":
      writeBlock(
        gRetractModal.format(98), gCycleModal.format(88),
        getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
        "P" + milliFormat.format(P), // not optional
        feedOutput.format(F)
      );
      break;
    case "boring":
      if (feedFormat.getResultingValue(cycle.feedrate) != feedFormat.getResultingValue(cycle.retractFeedrate)) {
        expandCyclePoint(x, y, z);
        break;
      }
      if (P > 0) {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(89),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          "P" + milliFormat.format(P), // not optional
          feedOutput.format(F)
        );
      } else {
        writeBlock(
          gRetractModal.format(98), gCycleModal.format(85),
          getCommonCycle(x, y, z, cycle.retract, cycle.clearance),
          feedOutput.format(F)
        );
      }
      break;

    case "probing-x":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9811,
        "X" + xyzFormat.format(x + approach(cycle.approach1) * (cycle.probeClearance + tool.diameter / 2)),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-y":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9811,
        "Y" + xyzFormat.format(y + approach(cycle.approach1) * (cycle.probeClearance + tool.diameter / 2)),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-z":
      protectedProbeMove(cycle, x, y, Math.min(z - cycle.depth + cycle.probeClearance, cycle.retract));
      writeBlock(
        gFormat.format(65), "P" + 9811,
        "Z" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-x-wall":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "X" + xyzFormat.format(cycle.width1),
        "Z" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-y-wall":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "Y" + xyzFormat.format(cycle.width1),
        "Z" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-x-channel":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "X" + xyzFormat.format(cycle.width1),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        // not required "R" + xyzFormat.format(cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-x-channel-with-island":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "X" + xyzFormat.format(cycle.width1),
        "Z" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(-cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-y-channel":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "Y" + xyzFormat.format(cycle.width1),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        // not required "R" + xyzFormat.format(cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-y-channel-with-island":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "Y" + xyzFormat.format(cycle.width1),
        "Z" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(-cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-circular-boss":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9814,
        "D" + xyzFormat.format(cycle.width1),
        "Z" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-circular-partial-boss":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9823,
        "A" + xyzFormat.format(cycle.partialCircleAngleA),
        "B" + xyzFormat.format(cycle.partialCircleAngleB),
        "C" + xyzFormat.format(cycle.partialCircleAngleC),
        "D" + xyzFormat.format(cycle.width1),
        "Z" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-circular-hole":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9814,
        "D" + xyzFormat.format(cycle.width1),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        // not required "R" + xyzFormat.format(cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-circular-partial-hole":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9823,
        "A" + xyzFormat.format(cycle.partialCircleAngleA),
        "B" + xyzFormat.format(cycle.partialCircleAngleB),
        "C" + xyzFormat.format(cycle.partialCircleAngleC),
        "D" + xyzFormat.format(cycle.width1),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-circular-hole-with-island":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9814,
        "Z" + xyzFormat.format(z - cycle.depth),
        "D" + xyzFormat.format(cycle.width1),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(-cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-circular-partial-hole-with-island":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9823,
        "Z" + xyzFormat.format(z - cycle.depth),
        "A" + xyzFormat.format(cycle.partialCircleAngleA),
        "B" + xyzFormat.format(cycle.partialCircleAngleB),
        "C" + xyzFormat.format(cycle.partialCircleAngleC),
        "D" + xyzFormat.format(cycle.width1),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(-cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-rectangular-hole":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "X" + xyzFormat.format(cycle.width1),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        // not required "R" + xyzFormat.format(-cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "Y" + xyzFormat.format(cycle.width2),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        // not required "R" + xyzFormat.format(-cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-rectangular-boss":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "Z" + xyzFormat.format(z - cycle.depth),
        "X" + xyzFormat.format(cycle.width1),
        "R" + xyzFormat.format(cycle.probeClearance),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, true)
      );
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "Z" + xyzFormat.format(z - cycle.depth),
        "Y" + xyzFormat.format(cycle.width2),
        "R" + xyzFormat.format(cycle.probeClearance),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-rectangular-hole-with-island":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "Z" + xyzFormat.format(z - cycle.depth),
        "X" + xyzFormat.format(cycle.width1),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(-cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      writeBlock(
        gFormat.format(65), "P" + 9812,
        "Z" + xyzFormat.format(z - cycle.depth),
        "Y" + xyzFormat.format(cycle.width2),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(-cycle.probeClearance),
        getProbingArguments(cycle, true)
      );
      break;

    case "probing-xy-inner-corner":
      var cornerX = x + approach(cycle.approach1) * (cycle.probeClearance + tool.diameter / 2);
      var cornerY = y + approach(cycle.approach2) * (cycle.probeClearance + tool.diameter / 2);
      var cornerI = 0;
      var cornerJ = 0;
      if (cycle.probeSpacing !== undefined) {
        cornerI = cycle.probeSpacing;
        cornerJ = cycle.probeSpacing;
      }
      if ((cornerI != 0) && (cornerJ != 0)) {
        if (currentSection.strategy == "probe") {
          setProbeAngleMethod();
          probeVariables.compensationXY = "X[#135] Y[#136]";
        }
      }
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9815, xOutput.format(cornerX), yOutput.format(cornerY),
        conditional(cornerI != 0, "I" + xyzFormat.format(cornerI)),
        conditional(cornerJ != 0, "J" + xyzFormat.format(cornerJ)),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-xy-outer-corner":
      var cornerX = x + approach(cycle.approach1) * (cycle.probeClearance + tool.diameter / 2);
      var cornerY = y + approach(cycle.approach2) * (cycle.probeClearance + tool.diameter / 2);
      var cornerI = 0;
      var cornerJ = 0;
      if (cycle.probeSpacing !== undefined) {
        cornerI = cycle.probeSpacing;
        cornerJ = cycle.probeSpacing;
      }
      if ((cornerI != 0) && (cornerJ != 0)) {
        if (currentSection.strategy == "probe") {
          setProbeAngleMethod();
          probeVariables.compensationXY = "X[#135] Y[#136]";
        }
      }
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9816, xOutput.format(cornerX), yOutput.format(cornerY),
        conditional(cornerI != 0, "I" + xyzFormat.format(cornerI)),
        conditional(cornerJ != 0, "J" + xyzFormat.format(cornerJ)),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, true)
      );
      break;
    case "probing-x-plane-angle":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9843,
        "X" + xyzFormat.format(x + approach(cycle.approach1) * (cycle.probeClearance + tool.diameter / 2)),
        "D" + xyzFormat.format(cycle.probeSpacing),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "A" + xyzFormat.format(cycle.nominalAngle != undefined ? cycle.nominalAngle : 90),
        getProbingArguments(cycle, false)
      );
      if (currentSection.strategy == "probe") {
        setProbeAngleMethod();
        probeVariables.compensationXY = "X" + xyzFormat.format(0) + " Y" + xyzFormat.format(0);
      }
      break;
    case "probing-y-plane-angle":
      protectedProbeMove(cycle, x, y, z - cycle.depth);
      writeBlock(
        gFormat.format(65), "P" + 9843,
        "Y" + xyzFormat.format(y + approach(cycle.approach1) * (cycle.probeClearance + tool.diameter / 2)),
        "D" + xyzFormat.format(cycle.probeSpacing),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "A" + xyzFormat.format(cycle.nominalAngle != undefined ? cycle.nominalAngle : 0),
        getProbingArguments(cycle, false)
      );
      if (currentSection.strategy == "probe") {
        setProbeAngleMethod();
        probeVariables.compensationXY = "X" + xyzFormat.format(0) + " Y" + xyzFormat.format(0);
      }
      break;
    case "probing-xy-pcd-hole":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9819,
        "A" + xyzFormat.format(cycle.pcdStartingAngle),
        "B" + xyzFormat.format(cycle.numberOfSubfeatures),
        "C" + xyzFormat.format(cycle.widthPCD),
        "D" + xyzFormat.format(cycle.widthFeature),
        "K" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        getProbingArguments(cycle, false)
      );
      if (cycle.updateToolWear) {
        error(localize("Action -Update Tool Wear- is not supported with this cycle."));
        return;
      }
      break;
    case "probing-xy-pcd-boss":
      protectedProbeMove(cycle, x, y, z);
      writeBlock(
        gFormat.format(65), "P" + 9819,
        "A" + xyzFormat.format(cycle.pcdStartingAngle),
        "B" + xyzFormat.format(cycle.numberOfSubfeatures),
        "C" + xyzFormat.format(cycle.widthPCD),
        "D" + xyzFormat.format(cycle.widthFeature),
        "Z" + xyzFormat.format(z - cycle.depth),
        "Q" + xyzFormat.format(cycle.probeOvertravel),
        "R" + xyzFormat.format(cycle.probeClearance),
        getProbingArguments(cycle, false)
      );
      if (cycle.updateToolWear) {
        error(localize("Action -Update Tool Wear- is not supported with this cycle."));
        return;
      }
      break;
    default:
      expandCyclePoint(x, y, z);
    }

    // place cycle operation in subprogram
    if (cycleSubprogramIsActive) {
      if (cycleExpanded || isProbeOperation()) {
        cycleSubprogramIsActive = false;
      } else {
        // call subprogram
        writeBlock(mFormat.format(98), "P" + oFormat.format(currentSubprogram));
        subprogramStart(new Vector(x, y, z), new Vector(0, 0, 0), false);
      }
    }
    if (incrementalMode) { // set current position to clearance height
      setCyclePosition(cycle.clearance);
    }

  // 2nd through nth cycle point
  } else {
    if (cycleExpanded) {
      expandCyclePoint(x, y, z);
    } else {
      if (!xyzFormat.areDifferent(x, xOutput.getCurrent()) &&
          !xyzFormat.areDifferent(y, yOutput.getCurrent()) &&
          !xyzFormat.areDifferent(z, zOutput.getCurrent())) {
        switch (gPlaneModal.getCurrent()) {
        case 17: // XY
          xOutput.reset(); // at least one axis is required
          break;
        case 18: // ZX
          zOutput.reset(); // at least one axis is required
          break;
        case 19: // YZ
          yOutput.reset(); // at least one axis is required
          break;
        }
      }
      if (incrementalMode) { // set current position to retract height
        setCyclePosition(cycle.retract);
      }
      writeBlock(xOutput.format(x), yOutput.format(y));
      if (incrementalMode) { // set current position to clearance height
        setCyclePosition(cycle.clearance);
      }
    }
  }
}

function getProbingArguments(cycle, updateWCS) {
  var outputWCSCode = updateWCS && currentSection.strategy == "probe";
  var probeOutputWorkOffset = currentSection.probeWorkOffset;
  if (outputWCSCode) {
    validate(probeOutputWorkOffset <= 99, "Work offset is out of range.");
    var nextWorkOffset = hasNextSection() ? getNextSection().workOffset == 0 ? 1 : getNextSection().workOffset : -1;
    if (probeOutputWorkOffset == nextWorkOffset) {
      currentWorkOffset = undefined;
    }
  }
  return [
    (cycle.angleAskewAction == "stop-message" ? "B" + xyzFormat.format(cycle.toleranceAngle ? cycle.toleranceAngle : 0) : undefined),
    ((cycle.updateToolWear && cycle.toolWearErrorCorrection < 100) ? "F" + xyzFormat.format(cycle.toolWearErrorCorrection ? cycle.toolWearErrorCorrection / 100 : 100) : undefined),
    (cycle.wrongSizeAction == "stop-message" ? "H" + xyzFormat.format(cycle.toleranceSize ? cycle.toleranceSize : 0) : undefined),
    (cycle.outOfPositionAction == "stop-message" ? "M" + xyzFormat.format(cycle.tolerancePosition ? cycle.tolerancePosition : 0) : undefined),
    ((cycle.updateToolWear && cycleType == "probing-z") ? "T" + xyzFormat.format(cycle.toolLengthOffset) : undefined),
    ((cycle.updateToolWear && cycleType !== "probing-z") ? "T" + xyzFormat.format(cycle.toolDiameterOffset) : undefined),
    (cycle.updateToolWear ? "V" + xyzFormat.format(cycle.toolWearUpdateThreshold ? cycle.toolWearUpdateThreshold : 0) : undefined),
    (cycle.printResults ? "W" + xyzFormat.format(1 + cycle.incrementComponent) : undefined), // 1 for advance feature, 2 for reset feature count and advance component number. first reported result in a program should use W2.
    conditional(outputWCSCode, "S" + probeWCSFormat.format(probeOutputWorkOffset > 6 ? (probeOutputWorkOffset - 6 + 100) : probeOutputWorkOffset))
  ];
}

function onCycleEnd() {
  if (isProbeOperation()) {
    zOutput.reset();
    gMotionModal.reset();
    writeBlock(gFormat.format(65), "P" + 9810, zOutput.format(cycle.retract)); // protected retract move
  } else {
    if (cycleSubprogramIsActive) {
      subprogramEnd();
      cycleSubprogramIsActive = false;
    }
    if (!cycleExpanded) {
      writeBlock(conditional(getProperty("usePitchForTapping"), gFeedModeModal.format(94)), gCycleModal.format(80));
      zOutput.reset();
    }
  }
}

var pendingRadiusCompensation = -1;

function onRadiusCompensation() {
  pendingRadiusCompensation = radiusCompensation;
}

function onRapid(_x, _y, _z) {
  var x = xOutput.format(_x);
  var y = yOutput.format(_y);
  var z = zOutput.format(_z);
  if (x || y || z) {
    if (pendingRadiusCompensation >= 0) {
      error(localize("Radius compensation mode cannot be changed at rapid traversal."));
      return;
    }
    writeBlock(gMotionModal.format(0), x, y, z);
    forceFeed();
  }
}

function onLinear(_x, _y, _z, feed) {
  var x = xOutput.format(_x);
  var y = yOutput.format(_y);
  var z = zOutput.format(_z);
  var f = feedOutput.format(feed);
  if (x || y || z) {
    if (pendingRadiusCompensation >= 0) {
      pendingRadiusCompensation = -1;
      var d = tool.diameterOffset;
      if (d > 99) {
        warning(localize("The diameter offset exceeds the maximum value."));
      }
      writeBlock(gPlaneModal.format(17));
      switch (radiusCompensation) {
      case RADIUS_COMPENSATION_LEFT:
        dOutput.reset();
        writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(41), x, y, z, dOutput.format(d), f);
        break;
      case RADIUS_COMPENSATION_RIGHT:
        dOutput.reset();
        writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(42), x, y, z, dOutput.format(d), f);
        break;
      default:
        writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(40), x, y, z, f);
      }
    } else {
      writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), x, y, z, f);
    }
  } else if (f) {
    if (getNextRecord().isMotion()) { // try not to output feed without motion
      forceFeed(); // force feed on next line
    } else {
      writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), f);
    }
  }
}

function onRapid5D(_x, _y, _z, _a, _b, _c) {
  if (pendingRadiusCompensation >= 0) {
    error(localize("Radius compensation mode cannot be changed at rapid traversal."));
    return;
  }
  var x = xOutput.format(_x);
  var y = yOutput.format(_y);
  var z = zOutput.format(_z);
  var a = aOutput.format(_a);
  var b = bOutput.format(_b);
  var c = cOutput.format(_c);
  writeBlock(gMotionModal.format(0), x, y, z, a, b, c);
  feedOutput.reset();
}

function onLinear5D(_x, _y, _z, _a, _b, _c, feed) {
  if (!currentSection.isOptimizedForMachine()) {
    error(localize("This post configuration has not been customized for 5-axis simultaneous toolpath."));
    return;
  }
  if (pendingRadiusCompensation >= 0) {
    error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));
    return;
  }
  var x = xOutput.format(_x);
  var y = yOutput.format(_y);
  var z = zOutput.format(_z);
  var a = aOutput.format(_a);
  var b = bOutput.format(_b);
  var c = cOutput.format(_c);

  // get feedrate number
  var f = {frn:0, fmode:0};
  if (a || b || c) {
    f = getMultiaxisFeed(_x, _y, _z, _a, _b, _c, feed);
    if (useInverseTimeFeed) {
      f.frn = inverseTimeOutput.format(f.frn);
    } else {
      f.frn = feedOutput.format(f.frn);
    }
  } else {
    f.frn = feedOutput.format(feed);
    f.fmode = 94;
  }

  if (x || y || z || a || b || c) {
    writeBlock(gFeedModeModal.format(f.fmode), gMotionModal.format(1), x, y, z, a, b, c, f.frn);
  } else if (f.frn) {
    if (getNextRecord().isMotion()) { // try not to output feed without motion
      feedOutput.reset(); // force feed on next line
    } else {
      writeBlock(gFeedModeModal.format(f.fmode), gMotionModal.format(1), f.frn);
    }
  }
}

// Start of multi-axis feedrate logic
/***** Be sure to add 'useInverseTime' to post properties if necessary. *****/
/***** 'inverseTimeOutput' should be defined if Inverse Time feedrates are supported. *****/
/***** 'previousABC' can be added throughout to maintain previous rotary positions. Required for Mill/Turn machines. *****/
/***** 'headOffset' should be defined when a head rotary axis is defined. *****/
/***** The feedrate mode must be included in motion block output (linear, circular, etc.) for Inverse Time feedrate support. *****/
var dpmBPW = 0.1; // ratio of rotary accuracy to linear accuracy for DPM calculations
var inverseTimeUnits = 1.0; // 1.0 = minutes, 60.0 = seconds
var maxInverseTime = 9999; // maximum value to output for Inverse Time feeds
var maxDPM = 9999.99; // maximum value to output for DPM feeds
var useInverseTimeFeed = true; // use 1/T feeds
var inverseTimeFormat = createFormat({decimals:(unit == MM ? 1 : 2), forceDecimal:true});
var inverseTimeOutput = createVariable({prefix:"F", force:true}, inverseTimeFormat);
var previousDPMFeed = 0; // previously output DPM feed
var dpmFeedToler = 0.5; // tolerance to determine when the DPM feed has changed
// var previousABC = new Vector(0, 0, 0); // previous ABC position if maintained in post, don't define if not used
var forceOptimized = undefined; // used to override optimized-for-angles points (XZC-mode)

/** Calculate the multi-axis feedrate number. */
function getMultiaxisFeed(_x, _y, _z, _a, _b, _c, feed) {
  var f = {frn:0, fmode:0};
  if (feed <= 0) {
    error(localize("Feedrate is less than or equal to 0."));
    return f;
  }

  var length = getMoveLength(_x, _y, _z, _a, _b, _c);

  if (useInverseTimeFeed) { // inverse time
    f.frn = getInverseTime(length.tool, feed);
    f.fmode = 93;
    feedOutput.reset();
  } else { // degrees per minute
    f.frn = getFeedDPM(length, feed);
    f.fmode = 94;
  }
  return f;
}

/** Returns point optimization mode. */
function getOptimizedMode() {
  if (forceOptimized != undefined) {
    return forceOptimized;
  }
  // return (currentSection.getOptimizedTCPMode() != 0); // TAG:doesn't return correct value
  return true; // always return false for non-TCP based heads
}

/** Calculate the DPM feedrate number. */
function getFeedDPM(_moveLength, _feed) {
  if ((_feed == 0) || (_moveLength.tool < 0.0001) || (toDeg(_moveLength.abcLength) < 0.0005)) {
    previousDPMFeed = 0;
    return _feed;
  }
  var moveTime = _moveLength.tool / _feed;
  if (moveTime == 0) {
    previousDPMFeed = 0;
    return _feed;
  }

  var dpmFeed;
  var tcp = false; // !getOptimizedMode() && (forceOptimized == undefined);   // set to false for rotary heads
  if (tcp) { // TCP mode is supported, output feed as FPM
    dpmFeed = _feed;
  } else if (false) { // standard DPM
    dpmFeed = Math.min(toDeg(_moveLength.abcLength) / moveTime, maxDPM);
    if (Math.abs(dpmFeed - previousDPMFeed) < dpmFeedToler) {
      dpmFeed = previousDPMFeed;
    }
  } else if (true) { // combination FPM/DPM
    var length = Math.sqrt(Math.pow(_moveLength.xyzLength, 2.0) + Math.pow((toDeg(_moveLength.abcLength) * dpmBPW), 2.0));
    dpmFeed = Math.min((length / moveTime), maxDPM);
    if (Math.abs(dpmFeed - previousDPMFeed) < dpmFeedToler) {
      dpmFeed = previousDPMFeed;
    }
  } else { // machine specific calculation
    dpmFeed = _feed;
  }
  previousDPMFeed = dpmFeed;
  return dpmFeed;
}

/** Calculate the Inverse time feedrate number. */
function getInverseTime(_length, _feed) {
  var inverseTime;
  if (_length < 1.e-6) { // tool doesn't move
    if (typeof maxInverseTime === "number") {
      inverseTime = maxInverseTime;
    } else {
      inverseTime = 999999;
    }
  } else {
    inverseTime = _feed / _length / inverseTimeUnits;
    if (typeof maxInverseTime === "number") {
      if (inverseTime > maxInverseTime) {
        inverseTime = maxInverseTime;
      }
    }
  }
  return inverseTime;
}

/** Calculate radius for each rotary axis. */
function getRotaryRadii(startTool, endTool, startABC, endABC) {
  var radii = new Vector(0, 0, 0);
  var startRadius;
  var endRadius;
  var axis = new Array(machineConfiguration.getAxisU(), machineConfiguration.getAxisV(), machineConfiguration.getAxisW());
  for (var i = 0; i < 3; ++i) {
    if (axis[i].isEnabled()) {
      var startRadius = getRotaryRadius(axis[i], startTool, startABC);
      var endRadius = getRotaryRadius(axis[i], endTool, endABC);
      radii.setCoordinate(axis[i].getCoordinate(), Math.max(startRadius, endRadius));
    }
  }
  return radii;
}

/** Calculate the distance of the tool position to the center of a rotary axis. */
function getRotaryRadius(axis, toolPosition, abc) {
  if (!axis.isEnabled()) {
    return 0;
  }

  var direction = axis.getEffectiveAxis();
  var normal = direction.getNormalized();
  // calculate the rotary center based on head/table
  var center;
  var radius;
  if (axis.isHead()) {
    var pivot;
    if (typeof headOffset === "number") {
      pivot = headOffset;
    } else {
      pivot = tool.getBodyLength();
    }
    if (axis.getCoordinate() == machineConfiguration.getAxisU().getCoordinate()) { // rider
      center = Vector.sum(toolPosition, Vector.product(machineConfiguration.getDirection(abc), pivot));
      center = Vector.sum(center, axis.getOffset());
      radius = Vector.diff(toolPosition, center).length;
    } else { // carrier
      var angle = abc.getCoordinate(machineConfiguration.getAxisU().getCoordinate());
      radius = Math.abs(pivot * Math.sin(angle));
      radius += axis.getOffset().length;
    }
  } else {
    center = axis.getOffset();
    var d1 = toolPosition.x - center.x;
    var d2 = toolPosition.y - center.y;
    var d3 = toolPosition.z - center.z;
    var radius = Math.sqrt(
      Math.pow((d1 * normal.y) - (d2 * normal.x), 2.0) +
      Math.pow((d2 * normal.z) - (d3 * normal.y), 2.0) +
      Math.pow((d3 * normal.x) - (d1 * normal.z), 2.0)
    );
  }
  return radius;
}

/** Calculate the linear distance based on the rotation of a rotary axis. */
function getRadialDistance(radius, startABC, endABC) {
  // calculate length of radial move
  var delta = Math.abs(endABC - startABC);
  if (delta > Math.PI) {
    delta = 2 * Math.PI - delta;
  }
  var radialLength = (2 * Math.PI * radius) * (delta / (2 * Math.PI));
  return radialLength;
}

/** Calculate tooltip, XYZ, and rotary move lengths. */
function getMoveLength(_x, _y, _z, _a, _b, _c) {
  // get starting and ending positions
  var moveLength = {};
  var startTool;
  var endTool;
  var startXYZ;
  var endXYZ;
  var startABC;
  if (typeof previousABC !== "undefined") {
    startABC = new Vector(previousABC.x, previousABC.y, previousABC.z);
  } else {
    startABC = getCurrentDirection();
  }
  var endABC = new Vector(_a, _b, _c);

  if (!getOptimizedMode()) { // calculate XYZ from tool tip
    startTool = getCurrentPosition();
    endTool = new Vector(_x, _y, _z);
    startXYZ = startTool;
    endXYZ = endTool;

    // adjust points for tables
    if (!machineConfiguration.getTableABC(startABC).isZero() || !machineConfiguration.getTableABC(endABC).isZero()) {
      startXYZ = machineConfiguration.getOrientation(machineConfiguration.getTableABC(startABC)).getTransposed().multiply(startXYZ);
      endXYZ = machineConfiguration.getOrientation(machineConfiguration.getTableABC(endABC)).getTransposed().multiply(endXYZ);
    }

    // adjust points for heads
    if (machineConfiguration.getAxisU().isEnabled() && machineConfiguration.getAxisU().isHead()) {
      if (typeof getOptimizedHeads === "function") { // use post processor function to adjust heads
        startXYZ = getOptimizedHeads(startXYZ.x, startXYZ.y, startXYZ.z, startABC.x, startABC.y, startABC.z);
        endXYZ = getOptimizedHeads(endXYZ.x, endXYZ.y, endXYZ.z, endABC.x, endABC.y, endABC.z);
      } else { // guess at head adjustments
        var startDisplacement = machineConfiguration.getDirection(startABC);
        startDisplacement.multiply(headOffset);
        var endDisplacement = machineConfiguration.getDirection(endABC);
        endDisplacement.multiply(headOffset);
        startXYZ = Vector.sum(startTool, startDisplacement);
        endXYZ = Vector.sum(endTool, endDisplacement);
      }
    }
  } else { // calculate tool tip from XYZ, heads are always programmed in TCP mode, so not handled here
    startXYZ = getCurrentPosition();
    endXYZ = new Vector(_x, _y, _z);
    startTool = machineConfiguration.getOrientation(machineConfiguration.getTableABC(startABC)).multiply(startXYZ);
    endTool = machineConfiguration.getOrientation(machineConfiguration.getTableABC(endABC)).multiply(endXYZ);
  }

  // calculate axes movements
  moveLength.xyz = Vector.diff(endXYZ, startXYZ).abs;
  moveLength.xyzLength = moveLength.xyz.length;
  moveLength.abc = Vector.diff(endABC, startABC).abs;
  for (var i = 0; i < 3; ++i) {
    if (moveLength.abc.getCoordinate(i) > Math.PI) {
      moveLength.abc.setCoordinate(i, 2 * Math.PI - moveLength.abc.getCoordinate(i));
    }
  }
  moveLength.abcLength = moveLength.abc.length;

  // calculate radii
  moveLength.radius = getRotaryRadii(startTool, endTool, startABC, endABC);

  // calculate the radial portion of the tool tip movement
  var radialLength = Math.sqrt(
    Math.pow(getRadialDistance(moveLength.radius.x, startABC.x, endABC.x), 2.0) +
    Math.pow(getRadialDistance(moveLength.radius.y, startABC.y, endABC.y), 2.0) +
    Math.pow(getRadialDistance(moveLength.radius.z, startABC.z, endABC.z), 2.0)
  );

  // calculate the tool tip move length
  // tool tip distance is the move distance based on a combination of linear and rotary axes movement
  moveLength.tool = moveLength.xyzLength + radialLength;

  // debug
  if (false) {
    writeComment("DEBUG - tool   = " + moveLength.tool);
    writeComment("DEBUG - xyz    = " + moveLength.xyz);
    var temp = Vector.product(moveLength.abc, 180 / Math.PI);
    writeComment("DEBUG - abc    = " + temp);
    writeComment("DEBUG - radius = " + moveLength.radius);
  }
  return moveLength;
}
// End of multi-axis feedrate logic

function onCircular(clockwise, cx, cy, cz, x, y, z, feed) {
  if (pendingRadiusCompensation >= 0) {
    error(localize("Radius compensation cannot be activated/deactivated for a circular move."));
    return;
  }

  var start = getCurrentPosition();

  if (isFullCircle()) {
    if (getProperty("useRadius") || isHelical()) { // radius mode does not support full arcs
      linearize(tolerance);
      return;
    }
    switch (getCircularPlane()) {
    case PLANE_XY:
      writeBlock(gPlaneModal.format(17), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), feedOutput.format(feed));
      break;
    case PLANE_ZX:
      writeBlock(gPlaneModal.format(18), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), iOutput.format(cx - start.x, 0), kOutput.format(cz - start.z, 0), feedOutput.format(feed));
      break;
    case PLANE_YZ:
      writeBlock(gPlaneModal.format(19), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), jOutput.format(cy - start.y, 0), kOutput.format(cz - start.z, 0), feedOutput.format(feed));
      break;
    default:
      linearize(tolerance);
    }
  } else if (!getProperty("useRadius")) {
    switch (getCircularPlane()) {
    case PLANE_XY:
      writeBlock(gPlaneModal.format(17), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), xOutput.format(x), yOutput.format(y), zOutput.format(z), iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), feedOutput.format(feed));
      break;
    case PLANE_ZX:
      writeBlock(gPlaneModal.format(18), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), xOutput.format(x), yOutput.format(y), zOutput.format(z), iOutput.format(cx - start.x, 0), kOutput.format(cz - start.z, 0), feedOutput.format(feed));
      break;
    case PLANE_YZ:
      writeBlock(gPlaneModal.format(19), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), xOutput.format(x), yOutput.format(y), zOutput.format(z), jOutput.format(cy - start.y, 0), kOutput.format(cz - start.z, 0), feedOutput.format(feed));
      break;
    default:
      if (getProperty("allow3DArcs")) {
        // make sure maximumCircularSweep is well below 360deg
        // we could use G02.4 or G03.4 - direction is calculated
        var ip = getPositionU(0.5);
        writeBlock(gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2.4 : 3.4), xOutput.format(ip.x), yOutput.format(ip.y), zOutput.format(ip.z), feedOutput.format(feed));
        writeBlock(xOutput.format(x), yOutput.format(y), zOutput.format(z));
      } else {
        linearize(tolerance);
      }
    }
  } else { // use radius mode
    var r = getCircularRadius();
    if (toDeg(getCircularSweep()) > (180 + 1e-9)) {
      r = -r; // allow up to <360 deg arcs
    }
    switch (getCircularPlane()) {
    case PLANE_XY:
      writeBlock(gPlaneModal.format(17), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), xOutput.format(x), yOutput.format(y), zOutput.format(z), "R" + rFormat.format(r), feedOutput.format(feed));
      break;
    case PLANE_ZX:
      writeBlock(gPlaneModal.format(18), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), xOutput.format(x), yOutput.format(y), zOutput.format(z), "R" + rFormat.format(r), feedOutput.format(feed));
      break;
    case PLANE_YZ:
      writeBlock(gPlaneModal.format(19), gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2 : 3), xOutput.format(x), yOutput.format(y), zOutput.format(z), "R" + rFormat.format(r), feedOutput.format(feed));
      break;
    default:
      if (getProperty("allow3DArcs")) {
        // make sure maximumCircularSweep is well below 360deg
        // we could use G02.4 or G03.4 - direction is calculated
        var ip = getPositionU(0.5);
        writeBlock(gFeedModeModal.format(94), gMotionModal.format(clockwise ? 2.4 : 3.4), xOutput.format(ip.x), yOutput.format(ip.y), zOutput.format(ip.z), feedOutput.format(feed));
        writeBlock(xOutput.format(x), yOutput.format(y), zOutput.format(z));
      } else {
        linearize(tolerance);
      }
    }
  }
}

var currentCoolantMode = COOLANT_OFF;
var coolantOff = undefined;
var forceCoolant = false;

function setCoolant(coolant) {
  var coolantCodes = getCoolantCodes(coolant);
  if (Array.isArray(coolantCodes)) {
    if (singleLineCoolant) {
      writeBlock(coolantCodes.join(getWordSeparator()));
    } else {
      for (var c in coolantCodes) {
        writeBlock(coolantCodes[c]);
      }
    }
    return undefined;
  }
  return coolantCodes;
}

function getCoolantCodes(coolant) {
  var multipleCoolantBlocks = new Array(); // create a formatted array to be passed into the outputted line
  if (!coolants) {
    error(localize("Coolants have not been defined."));
  }
  if (tool.type == TOOL_PROBE) { // avoid coolant output for probing
    coolant = COOLANT_OFF;
  }
  if (coolant == currentCoolantMode && (!forceCoolant || coolant == COOLANT_OFF)) {
    return undefined; // coolant is already active
  }
  if ((coolant != COOLANT_OFF) && (currentCoolantMode != COOLANT_OFF) && (coolantOff != undefined) && !forceCoolant) {
    if (Array.isArray(coolantOff)) {
      for (var i in coolantOff) {
        multipleCoolantBlocks.push(coolantOff[i]);
      }
    } else {
      multipleCoolantBlocks.push(coolantOff);
    }
  }
  forceCoolant = false;

  var m;
  var coolantCodes = {};
  for (var c in coolants) { // find required coolant codes into the coolants array
    if (coolants[c].id == coolant) {
      coolantCodes.on = coolants[c].on;
      if (coolants[c].off != undefined) {
        coolantCodes.off = coolants[c].off;
        break;
      } else {
        for (var i in coolants) {
          if (coolants[i].id == COOLANT_OFF) {
            coolantCodes.off = coolants[i].off;
            break;
          }
        }
      }
    }
  }
  if (coolant == COOLANT_OFF) {
    m = !coolantOff ? coolantCodes.off : coolantOff; // use the default coolant off command when an 'off' value is not specified
  } else {
    coolantOff = coolantCodes.off;
    m = coolantCodes.on;
  }

  if (!m) {
    onUnsupportedCoolant(coolant);
    m = 9;
  } else {
    if (Array.isArray(m)) {
      for (var i in m) {
        multipleCoolantBlocks.push(m[i]);
      }
    } else {
      multipleCoolantBlocks.push(m);
    }
    currentCoolantMode = coolant;
    for (var i in multipleCoolantBlocks) {
      if (typeof multipleCoolantBlocks[i] == "number") {
        multipleCoolantBlocks[i] = mFormat.format(multipleCoolantBlocks[i]);
      }
    }
    return multipleCoolantBlocks; // return the single formatted coolant value
  }
  return undefined;
}

var mapCommand = {
  COMMAND_END                     : 2,
  COMMAND_SPINDLE_CLOCKWISE       : 3,
  COMMAND_SPINDLE_COUNTERCLOCKWISE: 4,
  COMMAND_STOP_SPINDLE            : 5,
  COMMAND_ORIENTATE_SPINDLE       : 19
};

function onCommand(command) {
  switch (command) {
  case COMMAND_STOP:
    writeBlock(mFormat.format(0));
    forceSpindleSpeed = true;
    forceCoolant = true;
    return;
  case COMMAND_OPTIONAL_STOP:
    writeBlock(mFormat.format(1));
    forceSpindleSpeed = true;
    forceCoolant = true;
    return;
  case COMMAND_START_SPINDLE:
    onCommand(tool.clockwise ? COMMAND_SPINDLE_CLOCKWISE : COMMAND_SPINDLE_COUNTERCLOCKWISE);
    return;
  case COMMAND_LOCK_MULTI_AXIS:
    return;
  case COMMAND_UNLOCK_MULTI_AXIS:
    return;
  case COMMAND_START_CHIP_TRANSPORT:
    return;
  case COMMAND_STOP_CHIP_TRANSPORT:
    return;
  case COMMAND_BREAK_CONTROL:
    return;
  case COMMAND_TOOL_MEASURE:
    return;
  }

  var stringId = getCommandStringId(command);
  var mcode = mapCommand[stringId];
  if (mcode != undefined) {
    writeBlock(mFormat.format(mcode));
  } else {
    onUnsupportedCommand(command);
  }
}

function onSectionEnd() {
  writeBlock(gPlaneModal.format(17));

  if (currentSection.isMultiAxis()) {
    writeBlock(gFeedModeModal.format(94)); // inverse time feed off
  }
  if (!isLastSection() && (getNextSection().getTool().coolant != tool.coolant)) {
    setCoolant(COOLANT_OFF);
  }
  if (((getCurrentSectionId() + 1) >= getNumberOfSections()) ||
      (tool.number != getNextSection().getTool().number)) {
    onCommand(COMMAND_BREAK_CONTROL);
  }

  if (true) {
    if (isRedirecting()) {
      if (firstPattern) {
        var finalPosition = getFramePosition(currentSection.getFinalPosition());
        var abc;
        if (currentSection.isMultiAxis() && machineConfiguration.isMultiAxisConfiguration()) {
          abc = currentSection.getFinalToolAxisABC();
        } else {
          abc = currentWorkPlaneABC;
        }
        if (abc == undefined) {
          abc = new Vector(0, 0, 0);
        }
        setAbsoluteMode(finalPosition, abc);
        subprogramEnd();
      }
    }
  }
  if (isProbeOperation()) {
    writeBlock(gFormat.format(65), "P" + 9833); // spin the probe off
    if (probeVariables.probeAngleMethod != "G68") {
      setProbeAngle(); // output probe angle rotations if required
    }
  }
  forceAny();
}

/** Output block to do safe retract and/or move to home position. */
function writeRetract() {
  if (arguments.length == 0) {
    error(localize("No axis specified for writeRetract()."));
    return;
  }
  if (gRotationModal.getCurrent() == 68) { // cancel G68 before retracting
    cancelWorkPlane(true);
  }
  var words = []; // store all retracted axes in an array
  for (var i = 0; i < arguments.length; ++i) {
    let instances = 0; // checks for duplicate retract calls
    for (var j = 0; j < arguments.length; ++j) {
      if (arguments[i] == arguments[j]) {
        ++instances;
      }
    }
    if (instances > 1) { // error if there are multiple retract calls for the same axis
      error(localize("Cannot retract the same axis twice in one line"));
      return;
    }
    switch (arguments[i]) {
    case X:
      words.push("X" + xyzFormat.format(machineConfiguration.hasHomePositionX() ? machineConfiguration.getHomePositionX() : 0));
      break;
    case Y:
      words.push("Y" + xyzFormat.format(machineConfiguration.hasHomePositionY() ? machineConfiguration.getHomePositionY() : 0));
      break;
    case Z:
      words.push("Z" + xyzFormat.format(machineConfiguration.getRetractPlane()));
      retracted = true; // specifies that the tool has been retracted to the safe plane
      break;
    default:
      error(localize("Bad axis specified for writeRetract()."));
      return;
    }
  }
  if (words.length > 0) {
    gMotionModal.reset();
    gAbsIncModal.reset();
    writeBlock(gFormat.format(28), gAbsIncModal.format(91), words); // retract
    writeBlock(gAbsIncModal.format(90));
  }
  zOutput.reset();
}

var isDPRNTopen = false;
function inspectionCreateResultsFileHeader() {
  if (isDPRNTopen) {
    if (!getProperty("singleResultsFile")) {
      writeln("DPRNT[END]");
      writeBlock("PCLOS");
      isDPRNTopen = false;
    }
  }

  if (isProbeOperation() && !printProbeResults()) {
    return; // if print results is not desired by probe/ probeWCS
  }

  if (!isDPRNTopen) {
    writeBlock("PCLOS");
    writeBlock("POPEN");
    // check for existence of none alphanumeric characters but not spaces
    var resFile;
    if (getProperty("singleResultsFile")) {
      resFile = getParameter("job-description") + "-RESULTS";
    } else {
      resFile = getParameter("operation-comment") + "-RESULTS";
    }
    resFile = resFile.replace(/:/g, "-");
    resFile = resFile.replace(/[^a-zA-Z0-9 -]/g, "");
    resFile = resFile.replace(/\s/g, "-");
    writeln("DPRNT[START]");
    writeln("DPRNT[RESULTSFILE*" + resFile + "]");
    if (hasGlobalParameter("document-id")) {
      writeln("DPRNT[DOCUMENTID*" + getGlobalParameter("document-id") + "]");
    }
    if (hasGlobalParameter("model-version")) {
      writeln("DPRNT[MODELVERSION*" + getGlobalParameter("model-version") + "]");
    }
  }
  if (isProbeOperation() && printProbeResults()) {
    isDPRNTopen = true;
  }
}

function getPointNumber() {
  if (typeof inspectionWriteVariables == "function") {
    return (inspectionVariables.pointNumber);
  } else {
    return ("#122[60]");
  }
}

function inspectionWriteCADTransform() {
  var cadOrigin = currentSection.getModelOrigin();
  var cadWorkPlane = currentSection.getModelPlane().getTransposed();
  var cadEuler = cadWorkPlane.getEuler2(EULER_XYZ_S);
  writeln(
    "DPRNT[G331" +
    "*N" + getPointNumber() +
    "*A" + abcFormat.format(cadEuler.x) +
    "*B" + abcFormat.format(cadEuler.y) +
    "*C" + abcFormat.format(cadEuler.z) +
    "*X" + xyzFormat.format(-cadOrigin.x) +
    "*Y" + xyzFormat.format(-cadOrigin.y) +
    "*Z" + xyzFormat.format(-cadOrigin.z) +
    "]"
  );
}

function inspectionWriteWorkplaneTransform() {
  var orientation = (machineConfiguration.isMultiAxisConfiguration() && currentMachineABC != undefined) ? machineConfiguration.getOrientation(currentMachineABC) : currentSection.workPlane;
  var abc = orientation.getEuler2(EULER_XYZ_S);
  writeln("DPRNT[G330" +
    "*N" + getPointNumber() +
    "*A" + abcFormat.format(abc.x) +
    "*B" + abcFormat.format(abc.y) +
    "*C" + abcFormat.format(abc.z) +
    "*X0*Y0*Z0*I0*R0]"
  );
}

function writeProbingToolpathInformation(cycleDepth) {
  writeln("DPRNT[TOOLPATHID*" + getParameter("autodeskcam:operation-id") + "]");
  if (isInspectionOperation()) {
    writeln("DPRNT[TOOLPATH*" + getParameter("operation-comment") + "]");
  } else {
    writeln("DPRNT[CYCLEDEPTH*" + xyzFormat.format(cycleDepth) + "]");
  }
}

function onClose() {
  if (isDPRNTopen) {
    writeln("DPRNT[END]");
    writeBlock("PCLOS");
    isDPRNTopen = false;
  }

  if (probeVariables.probeAngleMethod == "G68") {
    cancelWorkPlane();
  }
  writeln("");
  optionalSection = false;

  setCoolant(COOLANT_OFF);

  writeRetract(Z);

  disableLengthCompensation(true);
  setSmoothing(false);
  zOutput.reset();

  setWorkPlane(new Vector(0, 0, 0)); // reset working plane

  if (probeVariables.probeAngleMethod == "G54.4") {
    writeBlock(gFormat.format(54.4), "P0");
  }
  writeRetract(X, Y);

  onImpliedCommand(COMMAND_END);
  onImpliedCommand(COMMAND_STOP_SPINDLE);
  writeBlock(mFormat.format(30)); // stop program, spindle stop, coolant off
  if (subprograms.length > 0) {
    writeln("");
    write(subprograms);
  }
  writeln("%");
}

function setProperty(property, value) {
  properties[property].current = value;
}